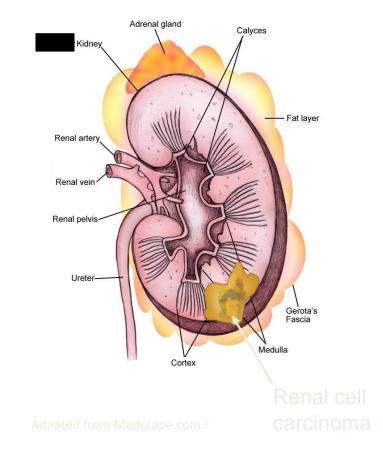
Con il patrocinio di:

LA GESTIONE DELLA PATOLOGIA NEOPLASTICA RENALE:

aslnapoli2nord

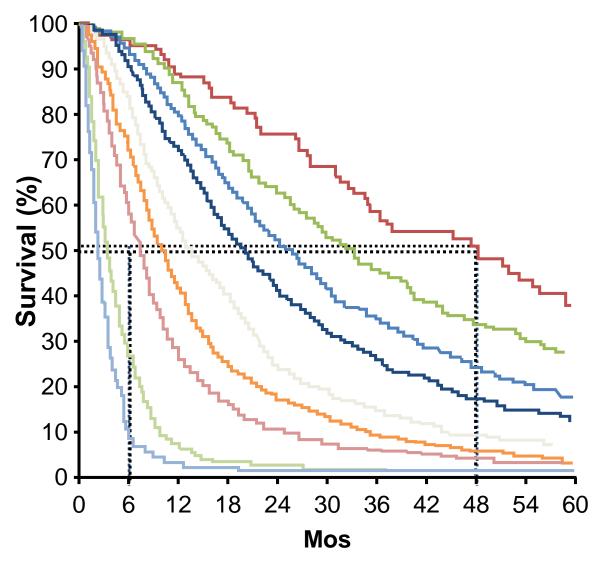
dal management sanitario alla personalizzazione delle terapie


Pozzuoli **11 maggio** 2019 Sala Comunale Palazzo Migliaresi Rione Terra ID ECN 256525

Dott.ssa Sarah Scagliarini AORN Cardarelli Napoli

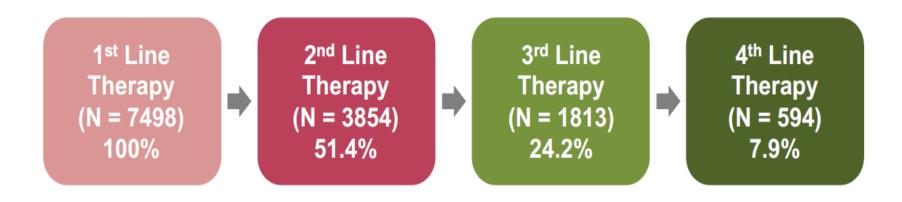
Description of RCC

- Approximately 90% of all kidney cancers are RCC¹
 - RCC typically develops in the lining of the kidney tubules²
 - There are 2 main histological subtypes: clear cell and non-clear cell³
- The remaining 10% of kidney cancers include transitional cell carcinomas, Wilms' tumors, and renal sarcomas¹
- RCC is classified as an "immunogenic" tumor based on these characteristics⁴:
 - Incidence of spontaneous tumor regression in the absence of therapy⁴
 - High level of tumor T-cell infiltration⁴
 - Responsiveness to immunotherapies such as IL-2 and IFN- α^4



IFN- α , interferon- α ; IL-2, interleukin-2; RCC, renal cell carcinoma.

1. American Cancer Society. Kidney Cancer. Available at: http://www.cancer.org/acs/groups/cid/documents/webcontent/003107-pdf.pdf. Accessed October 22, 2014. 2. National Center for Biotechnology Information. Renal Cell Cancer Treatment (PDQ[®]): Patient Version. Available at:

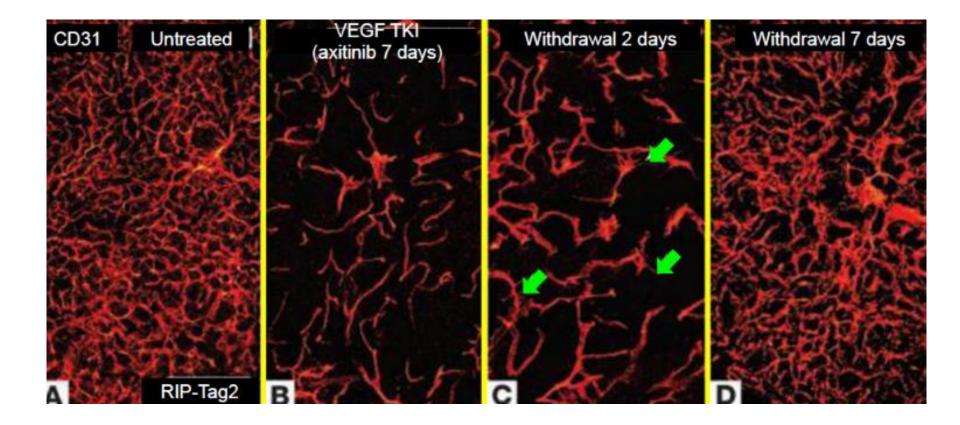

www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001544. Accessed June 17, 2014. 3. Xu KY, et al. *Biomark Res* 2015;3:5. 4. Itsumi M, et al. *Clin Dev Immunol* 2010;2010:284581. 5. Kidney anatomy. Available at: http://emedicine.medscape.com/article/1948775-overview. Accessed June 19, 2017.

RCC Is an Inherently Diverse Disease

Courtesy of Brian Rini, MD, FACP.

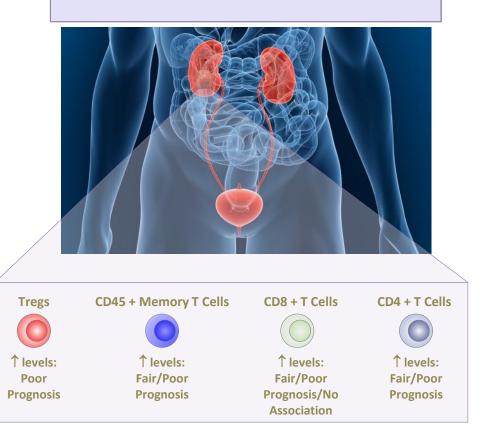
Proportion of RCC patients at each line of therapy

Karnofsky PS	< 80%
Tasso di emoglobinemia	< limite inferiore del range di normalità
Calcio corretto	> 10 mg/dl
Periodo dalla diagnosi al trattamento	< 1 anno
Conta assoluta dei neutrofili	> limite superiore del range di normalità
Conta piastrinica	> limite superiore del range di normalità


Tabella 4a - Sistema prognostico IMDC o criteri di Heng.

Prognosi	Numero di fattori	Sopravvivenza mediana	Sopravvivenza a 2 anni
Favorevole	0	NR	75%
Intermedia	1-2	27 mesi	53%
Sfavorevole	3-6	8.8 mesi	7%

Tabella 4b - Sistema prognostico Heng: categorie di rischio e relative sopravvivenze mediane.


Reversible inhibition of tumor angiogenesis by VEGFR-TKI – what is the reason of regrowth?

Rationale for Immunotherapy in RCC

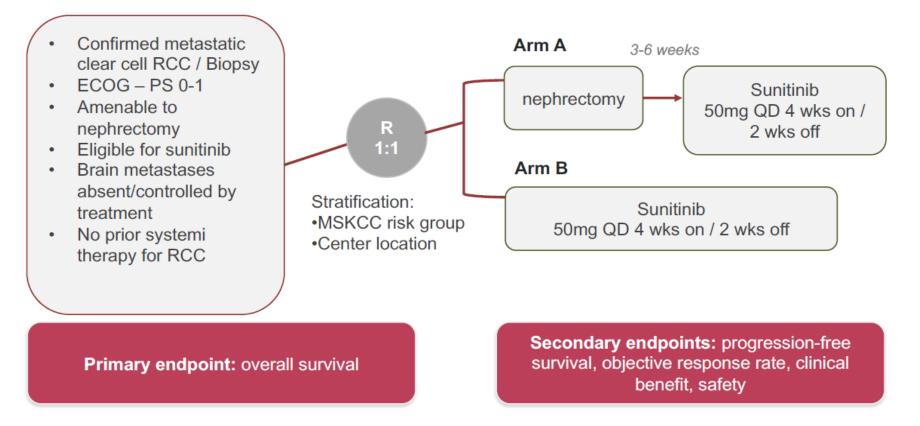
- Spontaneous advanced RCC remissions attributed to the immune system have been observed¹
- RCC exhibits immune cell infiltrates, and several immune escape mechanisms have been reported in RCC^{2,3}
- Historically, the mainstay of treatment for patients with mRCC was immunotherapy with interleukin-2 or interferon-α1
- I-O is an evolving treatment modality encompassing agents designed to directly harness the patient's own immune system to fight cancer^{7,8}

Studies have documented alterations in various immune cell types in RCC, including^{3–6}:

I-O, immuno-oncology; RCC, renal cell carcinoma; mRCC, metastatic renal cell carcinoma; Treg, regulatory T cell.

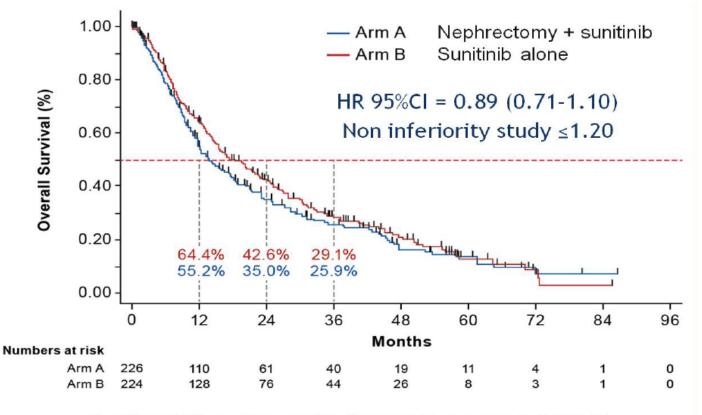
1. Escudier B. Ann Oncol 2012;23(Suppl 8):viii35–40 2. Noessner E et al. Oncolmmunology 2012;1:1451–3. 3. Bockorny B et al. Expert Opin Biol Ther 2013;13:911–25. 4. Hotta K, et al. Br J Cancer 2011;105:1191–96. 5. Nakano O et al. Cancer Res 2001;61:5132–6. 6. Igarashi T et al. Urol Int 2002;69:51–6.

7. Ascierto PA et al. J Trans Med 2014;12:141. 8. Eggermont A et al. Oncolmmunol 2014;3:e27560.


Corrected: Publisher Correction

Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma

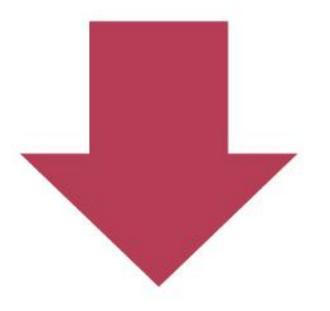
• Three biological axes:



CARMENA: Prospective, multicenter, open-label, randomized, phase 3 non-inferiority study

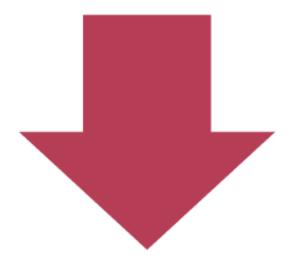
LPI, last patient included; MSKCC, Memorial Sloan Kettering Cancer Center; QD, once daily; R, randomization; RCC, renal cell carcinoma

Overall survival (ITT)



Median follow-up was 50.9 months (range 0.0-86.6)

Presented By Arnaud Mejean at 2018 ASCO Annual Meeting


Personalizzazione della dose

Therapy management

Cosa ci aspettiamo dal therapy management

Minori effetti collaterali

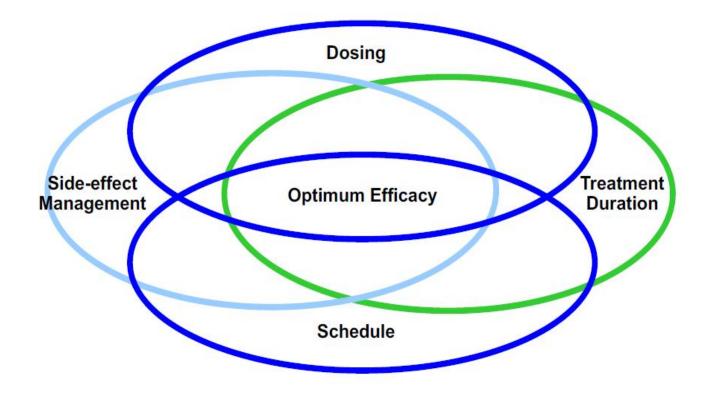
Maggiore aderenza al trattamento

Un migliore outcome

Come si realizza il therapy management

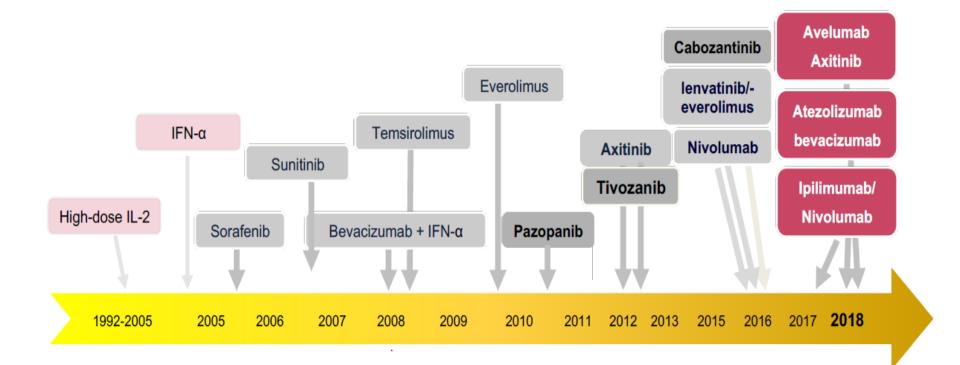
GESTENDO LA DOSE DEL FARMACO

UTILIZZANDO UNA SCHEDULA DI SOMMINISTRAZIONE PERSONALIZZATA

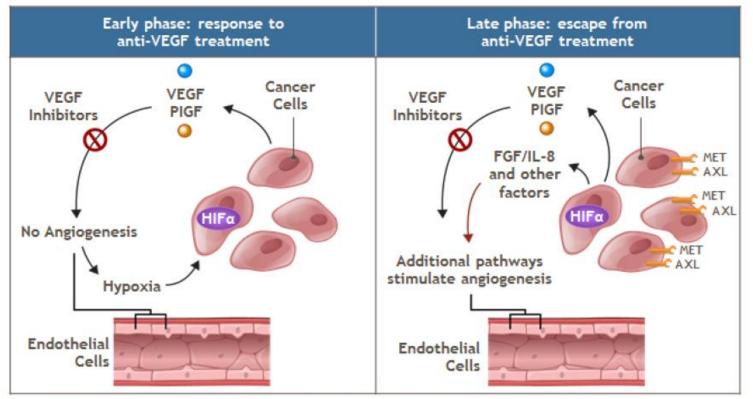

MASSIMIZZANDO LA DURATA DEL TRATTAMENTO

GESTENDO ATTIVAMENTE GLI AEs

Punti chiave del Therapy Management

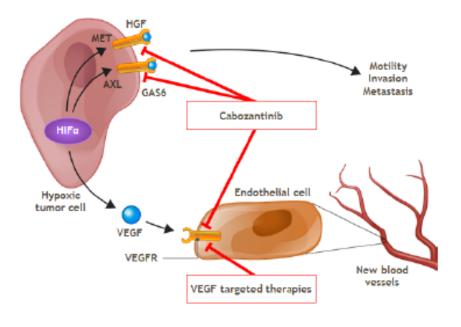

- Importanza del rapporto dose/risposta
- Concetto di variabilità interpersonale nella biodisponibilità dei farmaci
- Strategia per prevenire l'insorgenza della resistenza al target VEGF

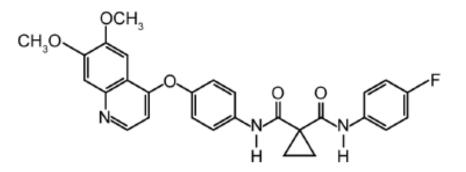
Key Factors for Successful Therapy Management in mRCC


ADVERSE EVENT TKI

		Grade 1	Grade 2	Grade 3
Hypertension		Pre-hypertension	Stage 1 hypertension (systolic 140–159 mmHg or diastolic BP 90–99 mmHg) recurrent or persistent (≥24 hours) Symptomatic increase by >20 mmHg (diastolic) or to >140/90 mmHg if previously WNL Medical intervention indicated Gr 1–2: 22%	 Stage 2 hypertension (systolic BP ≥160 mmHg or diastolic BP ≥100 mmHg) >1 drug or more intensive therapy than previously used indicated Medical intervention indicated Gr 3: 15%
PPES	¥ÿ	Minimum skin changes or dermatitis (eg, erythema, edema, or hyperkeratosis) without pain	Skin changes (eg, peeling, blisters, bleeding, edema, hyperkeratosis) with pain Limiting instrumental ADL ^a Gr 1–2: 34%	Severe skin changes (eg, peeling, blisters, bleeding, edema, or hyperkeratosis) with pain Limiting self-care ADL ^a Gr 3: 8%
Fatigue		Fatigue relieved by rest	Fatigue not relieved by rest Limiting instrumental ADL ^a Gr 1–2: 47%	Fatigue not relieved by rest Limiting self-care ADL ^a Gr 3: 9%
Stomatitis	,	Asymptomatic or mild symptoms; intervention not indicated	Moderate pain; not interfering with oral intake; modified diet indicated Gr 1–2: 20%	Severe pain; interfering with oral intake Gr 3: 2%
Diarrhea	Ł	Increase of <4 stools over baseline	• Increase of 4–6 stools per day over baseline Gr 1–2: 63%	Increase of ≥7 stools/day over baseline Incontinence Hospitalization indicated Limiting self-care ADL ^a Gr 3: 11%
Nausea	A	Loss of appetite without alteration in eating habits	Oral intake decreased without significant weight loss, dehydration, or malnutrition Gr 1–2: 46%	Inadequate oral caloric or fluid intake; tube feeding, TPN, or hospitalization indicated Gr 3: 4%
Vomiting		1–2 episodes (separated by 5 minutes) in 24 hours	• 3–5 episodes (separated by 5 minutes) in 24 hours Gr 1–2: 30%	• ≥6 episodes (separated by 5 minutes) in 24 hours; tube feeding, TPN, or hospitalization indicated Gr 3: 2%
Decreased appetite	+X	Loss of appetite without alteration in eating habits	Oral intake decreased without significant weight loss, dehydration, or malnutrition Gr 1–2: 44%	Associated with significant weight loss or malnutrition (eg, inadequate oral caloric and/or fluid intake); tube feeding or TPN indicated Gr 3: 2%

The Role of MET and AXL in Tumour Progression and Resistance to VEGF Receptor Inhibitors

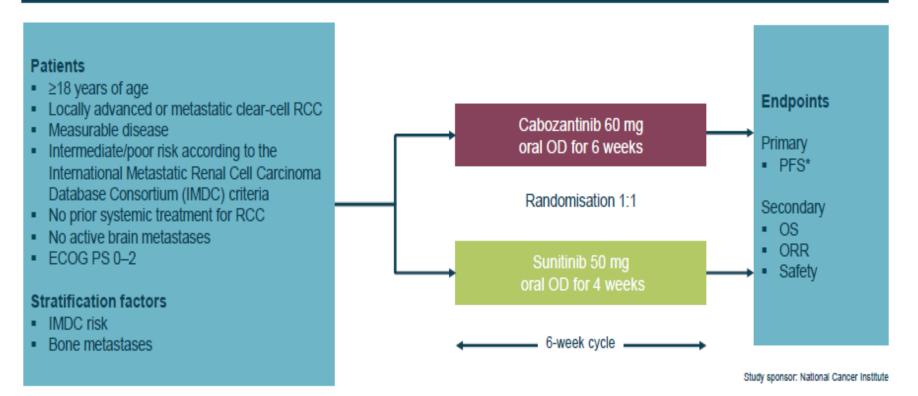

 In RCC, MET and AXL are thought to function as escape pathways potentially contributing to resistance to more selective VEGFR-targeted therapy¹



FGF, fibroblast growth factor; HIF, hypoxia-inducible factor;

Cabozantinib Targets Multiple Distinct Pathways

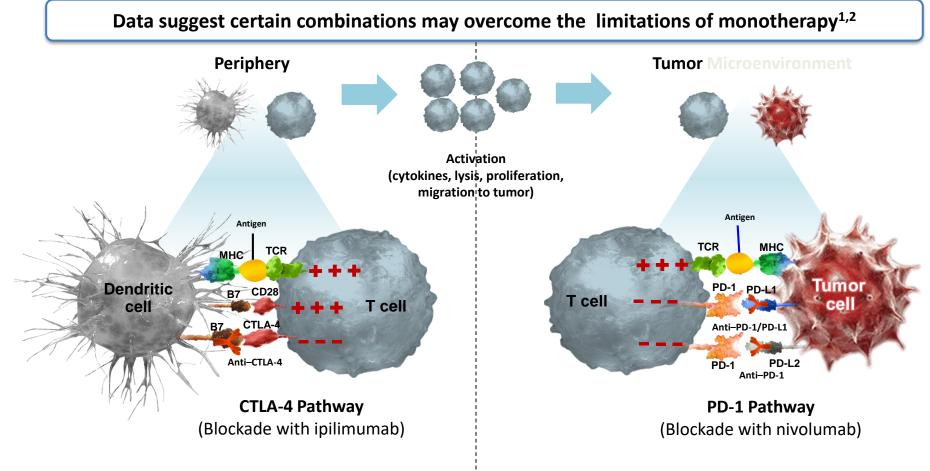
- Cabozantinib is an oral small molecule inhibitor of multiple tyrosine kinase receptors, including:
 - MET
 - AXL
 - VEGFR-1, VEGFR-2, VEGFR-3
- Cabozantinib, by targeting more than just the VEGF pathway, provides a multi-targeted approach for the treatment of RCC
 - This may help to overcome resistance to VEGFR inhibition



1. Yakes MF, et al. Mol Cancer Ther 2011;10:2298-2308

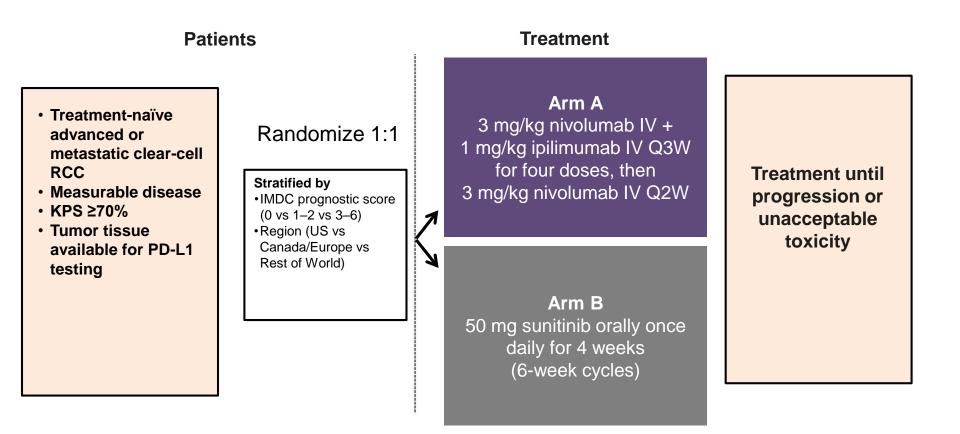
Cabozantinib Phase 2 Study (CABOSUN): Design

Phase 2, randomised, multicenter, open-label study to evaluate the efficacy and safety of cabozantinib vs sunitinib in patients with previously untreated local advanced or metastatic RCC



Choueiri TK, et al. J Clin Oncol 2017;35:591-7 ("Errata." J Clin Oncol, 35(32), p. 3736)

Phase 2 CABOSUN Study: Summary


- Cabozantinib significantly improved PFS compared with sunitinib in previouslyuntreated RCC patients of intermediate- and poor-risk IMDC categories:
 - 8.3 vs 5.4 months (HR = 0.56, P=0.0042) by investigator review (September 2016 cut-off)
 - 8.6 vs 5.3 months (HR = 0.48, P=0.0008) by independent review (September 2016 cut-off)
 - Benefit from cabozantinib was seen across subgroups
- Cabozantinib improved ORR over sunitinib
 - ORR: 33% vs 12% by investigator review (September 2016 cut-off)
 - ORR: 20% vs 9% by independent review (September 2016 cut-off)
- Trend towards improved OS with cabozantinib (the study was not powered to show an OS difference)
- The safety profile for cabozantinib was similar to sunitinib

Immune Checkpoint Inhibitors: Potential as Part of a Combination Regimen

Adapted from Pardoll DM et al. *Nat Rev Cancer* 2012.¹ *Abbreviations, references, and footnotes are listed in the speaker notes.*

CheckMate 214: Study design

CheckMate 214, Motzer et al.

IMDC risk categories for RCC

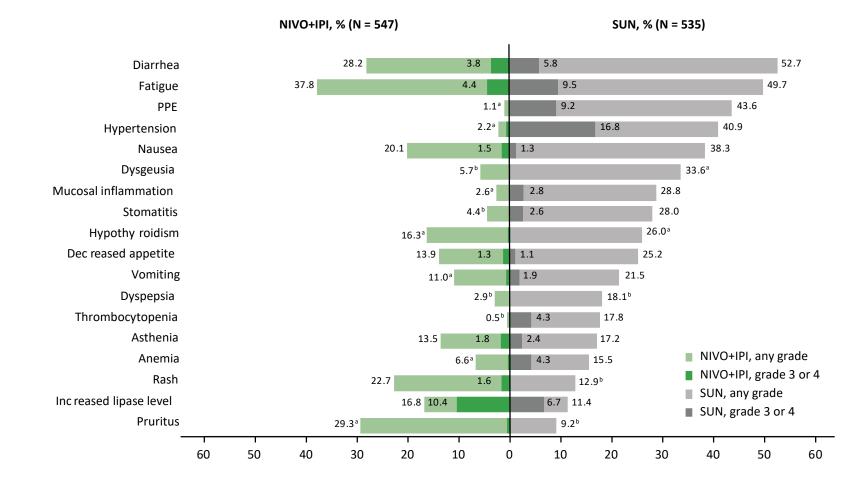
IMDC risk factors	IMDC risk categories ¹	Median OS in patients treated with anti-VEGF therapy ¹
 KPS of 70 <1 year from diagnosis to randomization Hemoglobin <lln< li=""> Corrected calcium concentration >10 mg/dL Absolute neutrophil count >ULN Absolute platelet count >ULN </lln<>	0 factors = favorable 1–2 factors = intermediate	43 months 23 months
	3—6 = poor	8 months

MDEngrief Rational Wetastall CRCC Batabase Consortium; KPS, Karnofsky performance status; LLN, lower limit of normal;

30-Month Follow-Up of the Phase 3 CheckMate 214 Trial of First-Line Nivolumab Plus Ipilimumab or Sunitinib in Patients With Advanced Renal Cell Carcinoma

Nizar M. Tannir,¹ Osvaldo Arén Frontera,² Hans J. Hammers,³ Michael Carducci,⁴ David F. McDermott,⁵ Pamela Salman,⁶ Bernard Escudier,⁷ Benoit Beuselinck,⁸ Asim Amin,⁹ Camillo Porta,¹⁰ Saby George,¹¹ Sergio Bracarda,¹² Scott S. Tykodi,¹³ Thomas Powles,¹⁴ Brian I. Rini,¹⁵ Yoshihiko Tomita,¹⁶ M. Brent McHenry,¹⁷ Sabeen Mekan,¹⁷ Robert J. Motzer¹⁸

¹University of Texas MD Anderson Cancer Center, Houston TX, USA; ²Centro Internacional de Estudios Clínicos, Santiago, Chile; ³UT Southwestern, Dallas, TX, USA; ⁴Johns Hopkins Medicine - The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA;


⁵Beth Israel Deaconess Medical Center, Dana-Farber/Harvard Cancer Center, Boston, MA, USA; ⁶Fundación Arturo López Pérez, Santiago, Chile; ⁷Gustave Roussy, Villejuif, France; ⁸University Hospitals Leuven, Leuven, Belgium; ⁹Levine Cancer Institute, Charlotte, NC, USA;

¹⁰University of Pavia, Pavia, Italy; ¹¹Roswell Park Cancer Institute, Buffalo, NY, USA; ¹²Ospedale San Donato, Azienda Ospedaliera S.Maria, Terni, Italy; ¹³University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ¹⁴Barts Cancer Institute, London, UK; ¹⁵Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA; ¹⁶Niigata University, Niigata, Japan; ¹⁷Bristol-Myers Squibb, Princeton, NJ, USA; ¹⁸Memorial Sloan Kettering Cancer Center, New York, NY, USA

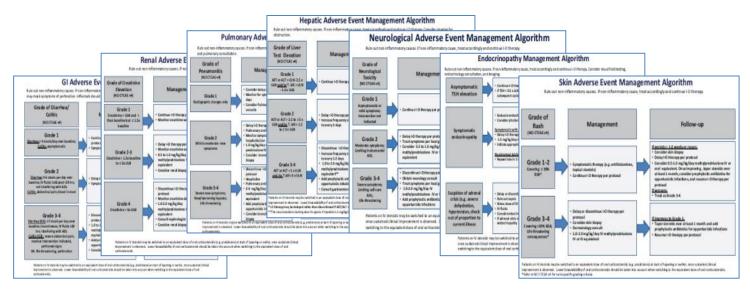
Table 1. Primary CheckMate 214 efficacy results: ITT, intermediate/poor-risk, and favorable-risk patients⁵

	ITT population		Intermediate/poor risk		Favorable risk	
Outcome	NIVO+IPI (N = 550)	SUN (N = 546)	NIVO+IPI (N = 425)	SUN (N = 422)	NIVO+IPI (N = 125)	SUN (N = 124)
Median OS, months	NR	32.9	NR	26.0	NR	32.9
HR for death (99.8% CI); <i>P</i> value	0.68 (0.49–0.95); <0.001		0.63 (0.44–0.89); <0.001		1.45 (0.51–4.12); 0.27	
Median PFS per IRRC, months	12.4	12.3	11.6	8.4	15.3	25.1
HR for progression/death (99.1% CI); <i>P</i> value	0.98 (0.79–1.23); 0.85		0.82 (0.64–1.05); 0.03		2.18 (1.29–3.68); <0.001	
OPP por IPPC %	39	32	42	27	29	52
ORR per IRRC, %	<i>P</i> = 0.02		<i>P</i> < 0.001		<i>P</i> < 0.001	

Figure 3. Any-grade treatment-related AEs occurring in >15% of patients in either arm: all treated patients

Management of irAEs: general considerations

- Consistent with randomized phase 3 trials, most treatment-related AEs were of low grade and manageable with established guidelines
- Delaying the use of corticosteroids or other immunosuppressive therapy may allow the development of severe irAEs and/or life threatening complications
- irAE treatment is dependent upon severity:
 - Grade 1–2 irAEs: dose delays and observation
 - Grade 3–4 irAEs: immunosuppression with corticosteroids
- After irAE improvement, corticosteroids should be tapered over 4–6 weeks (depending on the severity of the AE)
- Good compliance with irAE management algorithms is essential

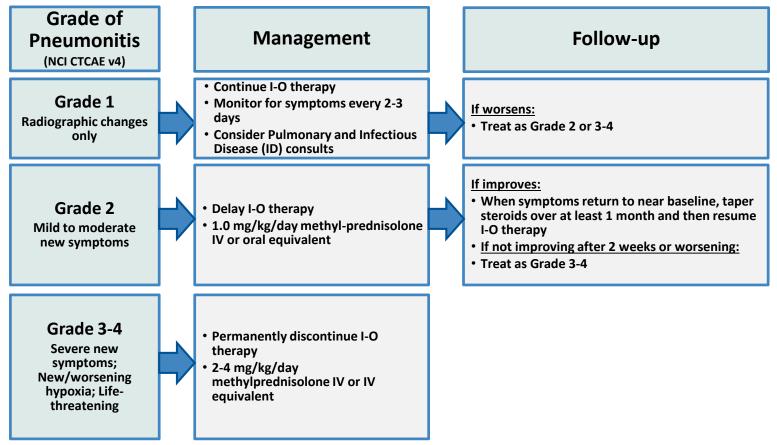

General Rules: Management of Nivolumab-Related Select AEs

Grade	Management	Continue the drug?
Low	Delay the dose	Resume Nivolumab when AEs resolve to grade ≤ 1 or baseline
Moderat e ~ High	Administer Corticosteroids ± Immunosuppressants (anti-TNF, mycophenolate, etc)	Discontinue Nivolumab permanently (Delay in some situations)

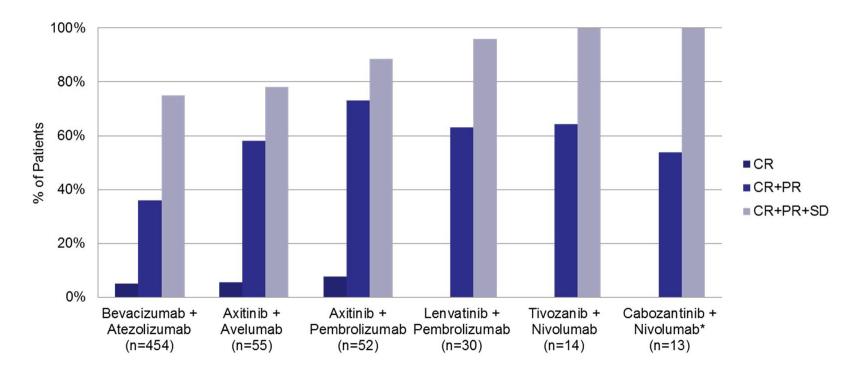
Select Adverse Event Categories

- Potentially caused by inflammatory mechanism
 - Requiring more frequent monitoring
- Manageable with unique intervention
 - Steroid/ other immunosuppressants
 - Endocrine replacement therapy

Refer to specific algorithms in the RMP


Pneumonitis

Incidence	 Pneumonitis (including interstitial lung disease) All grades: 3,2% Grades 3: 0,8% Grades 4: <0,1% No grade 5 reported 			
	No underlying factor identified to date			
Risk factor	 No apparent relationship to tumor type 			
	\rightarrow Cases observed in multiple tumor types (Melanoma, RCC, NSCLC, etc)			
Symptom	 Cough, SOB/Dyspnea (rest or exertion), Fever 			
Symptom	Asymptomatic radiographic changes			
Onset	 Median time to onset 3.6 months (range: 0.4-19.6) 			
Accessment	Pulse oximetry (rest and exertion)			
Assessment	CXR or CT			
	Delay Nivolumab dosing			
	Corticosteroids			
Management	 ⇒ if not improving 48 hrs or worsening, add immunosuppressants 			
MP OPDIVO Luglio 2016	Call BMS Medical			


Algorithm for Pulmonary Adverse Event

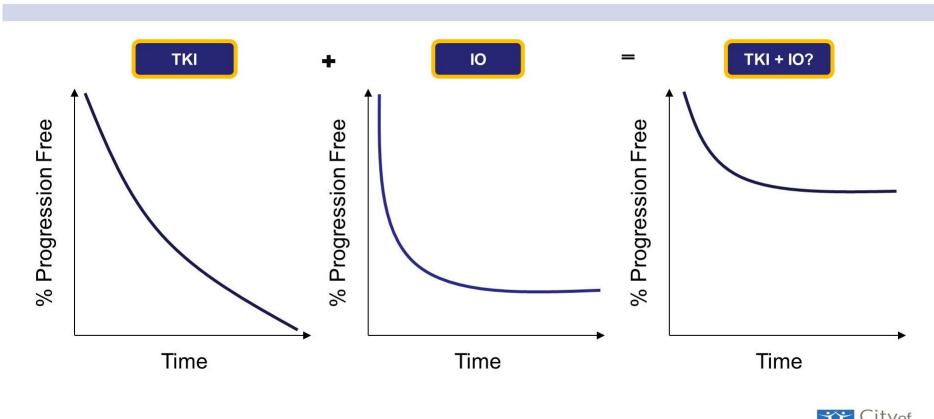
Rule out non-inflammatory causes. If non-inflammatory cause, treat accordingly and continue I-O therapy. Evaluate with imaging and pulmonary consultation.

Patients on IV steroids may be switched to an equivalent dose of oral corticosteroids (e.g. prednisone) at start of tapering or earlier, once sustained clinical improvement is observed. Lower bioavailability of oral corticosteroids should be taken into account when switching to the Aqtibiation doe of fiofaction costeroids.

The current landscape ...

Motzer et al ASCO GU 2018; Lee et al ESMO 2017; Choueiri et al ASCO 2017; Atkins et al ASCO GU 2018; Nadal et al ASCO GU 2018

Presented By Sumanta Pal at 2018 Genitourinary Cancers Symposium: Translating Evidence to Multidisciplinary Care


Phase III Assessments of VEGF + CPI Combinations in RCC

Control	Comparator
Sunitinib	Nivolumab/Ipilimumab
Sunitinib	Bevacizumab + Atezolizumab
Sunitinib	Axitinib + Pembrolizumab
Sunitinib	Lenvatinib + Everolimus <i>vs</i> Lenvatinib/Pembrolizumab
Sunitinib	Axitinib + Avelumab
Sunitinib	Cabozantinib/Nivolumab

Presented By Sumanta Pal at 2018 Genitourinary Cancers Symposium: Translating Evidence to Multidisciplinary Care

Objective of combination therapy

Grazie dell'attenzione!!!!

Presented By Sumanta Pal at 2018 Genitourinary Cancers Symposium: Translating Evidence to Multidisciplinary Care

GRAZIE!

sarahscagliarini@gmail.com