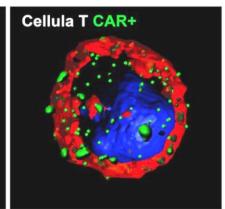
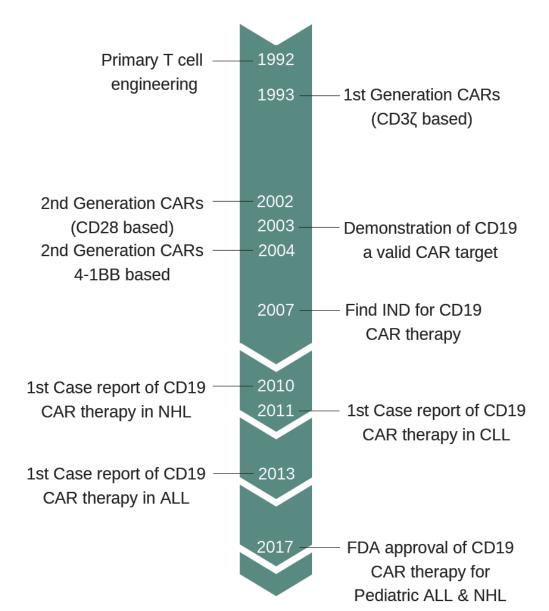

Antonello Pinto


Hematology-Oncology and Stem
Cell Transplantation Unit
Department of Hematology and
Developmental Therapeutics

National Cancer Institute, Fondazione G. Pascale, IRCCS, Naples, Italy

Generating super-soldiers the production of CAR-T cells

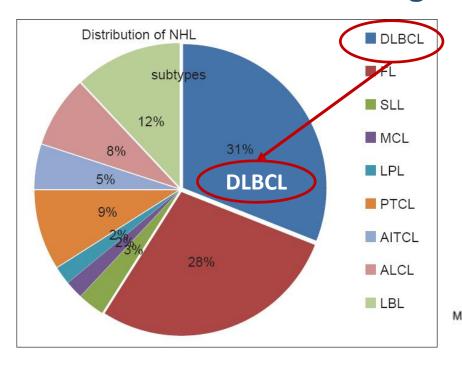


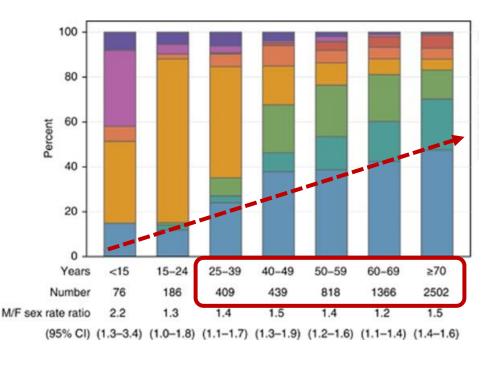
CAR-T Cells-based treatments: Development Timeline

CAR T-cells represent an autologous cellular immunotherapy using gene transfer to reprogram T cells to recognize and eliminate cancerous cells by targeting tumor-associated antigens

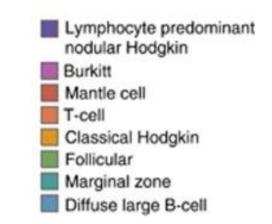
CAR-T Cells-based treatments: Development Timeline

Discovery to FDA approval ~ 25 years

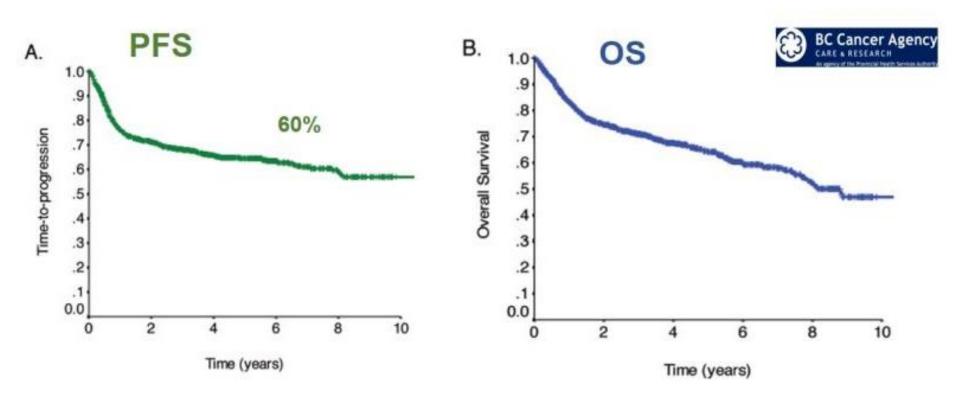



- The clinical scenario
 - The unmet needs
- CAR-T cells as a living drug
 - The idea
 - How it works
 - The logistics
- The Clinical Results
 - Registered indications
- The Toxicity & Safety Management
 - CRS
 - ICAN (Immune effector Cells Associated Neurotoxicity)
 - Other
- The Future (tomorrow)

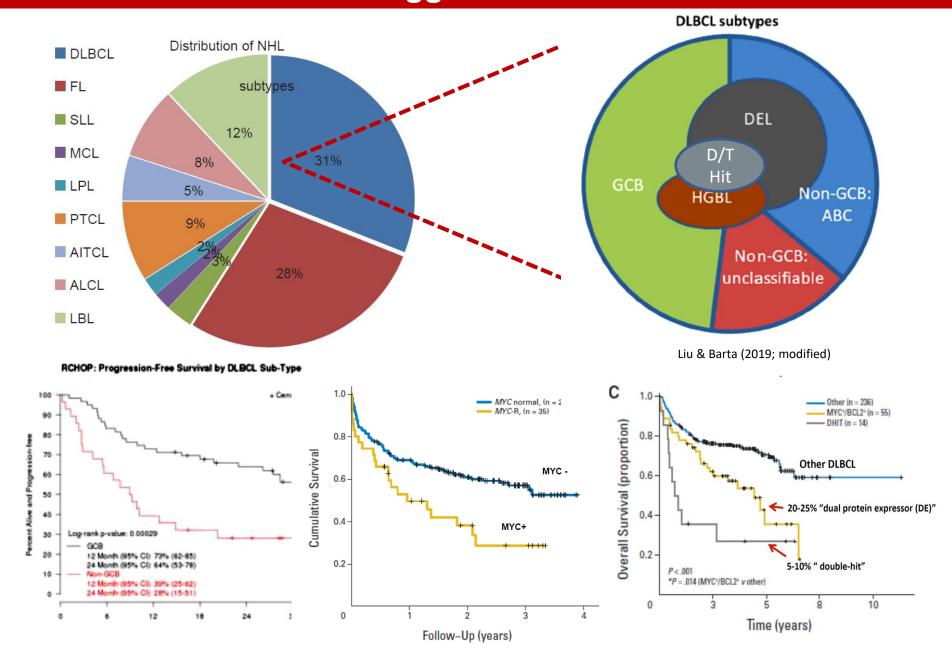
- The clinical scenario
 - The unmet needs
- CAR-T cells as a living drug
 - The idea
 - How it works
 - The logistics
- The Clinical Results
 - Registered indications
- The Toxicity & Safety Management
 - CRS
 - ICAN (Immune effector Cells Associated Neurotoxicity)
 - Other
- The Future (tomorrow)


New frontiers in the treatment of non-Hodgkin Lymphomas

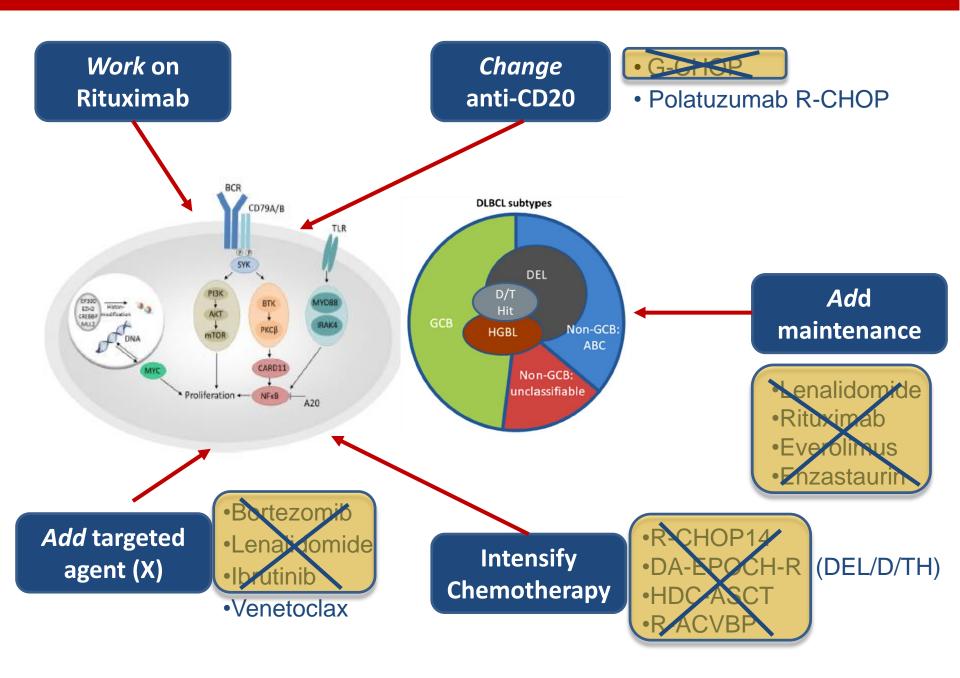
Diffuse Large B-cell Lymphoma



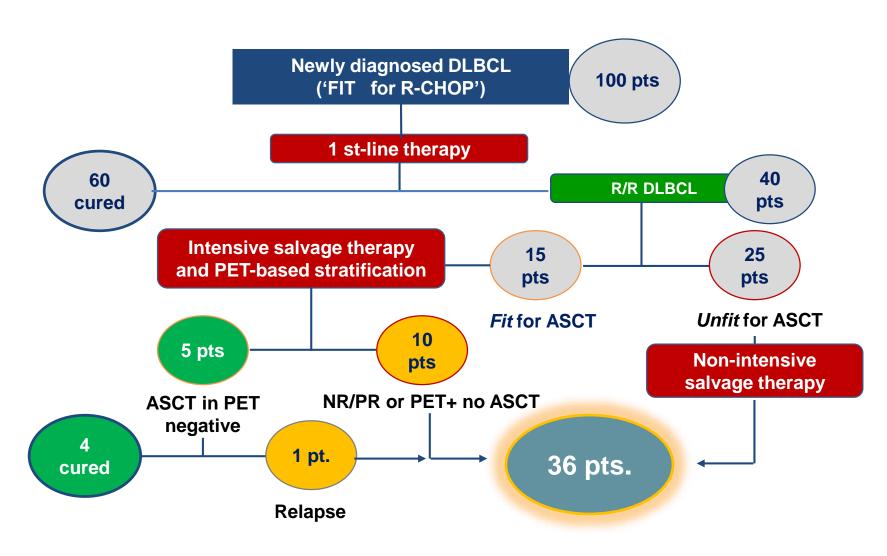
- DLBCL: 30% 32% of NHL
- Age-standardized incidence rate:
 - 5-6 *per* 100,000 persons-year
- [Campania: 420-480 new cases/year]
- Upfront cure rate: 50-55% [60% ?]


Evolution of aggressive NHL subtypes

Patients with DLBCL treated with R-CHOP-21 at BCCA (n=1476)

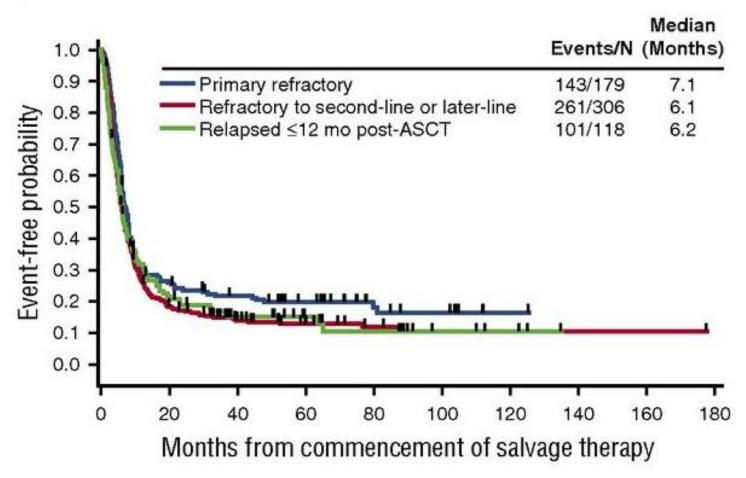


BC Cancer Agency Database Sehn Hematology 2012


DLBCL & Aggressive NHL: 2019

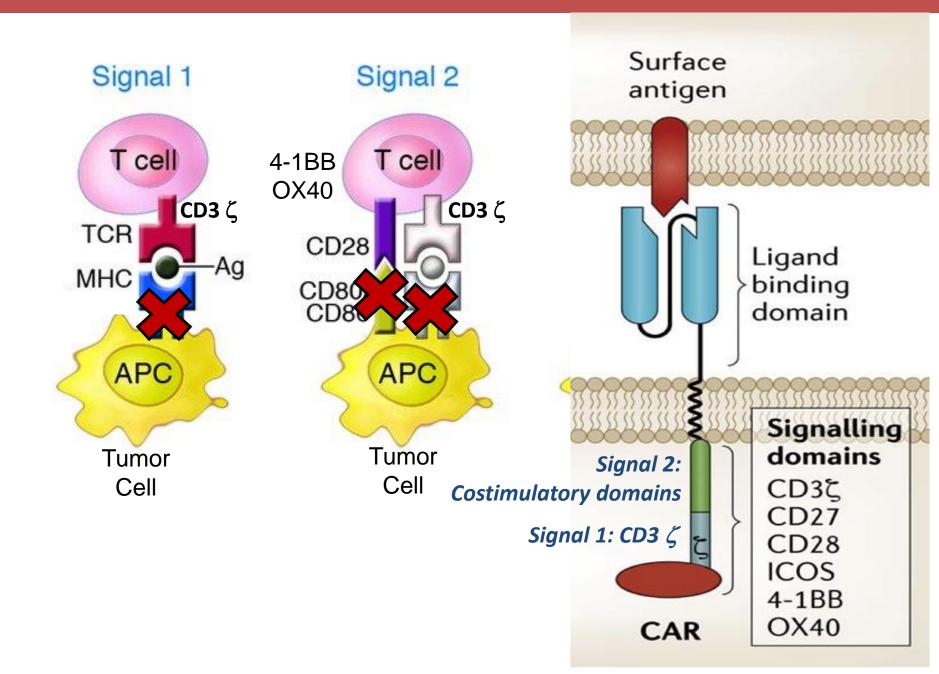
Evolution of Treatment for DLBCL

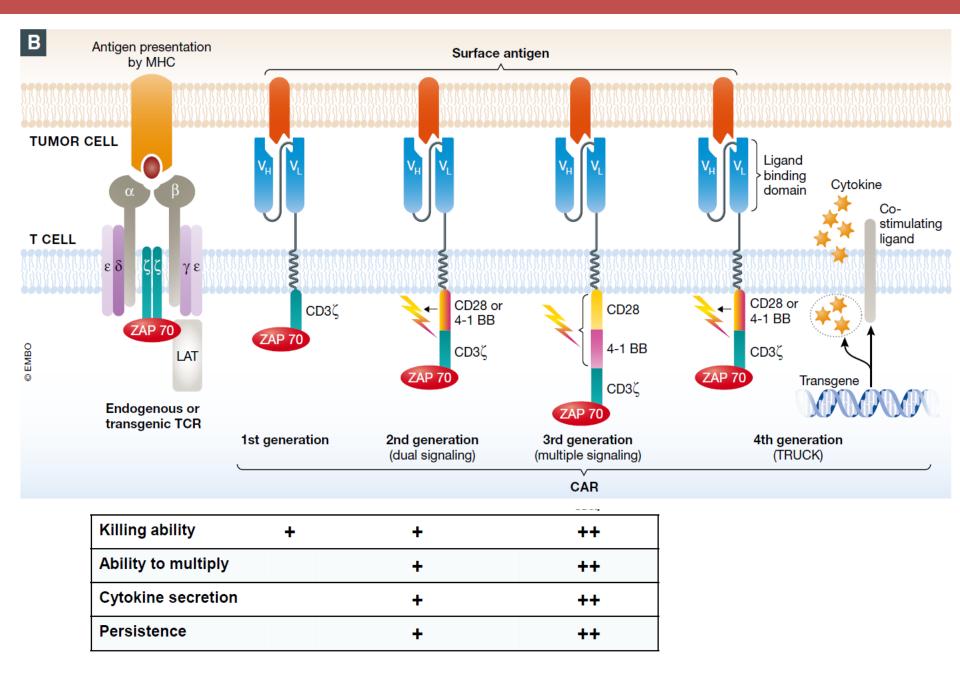
R/R DLBCL: new options are needed in different settings

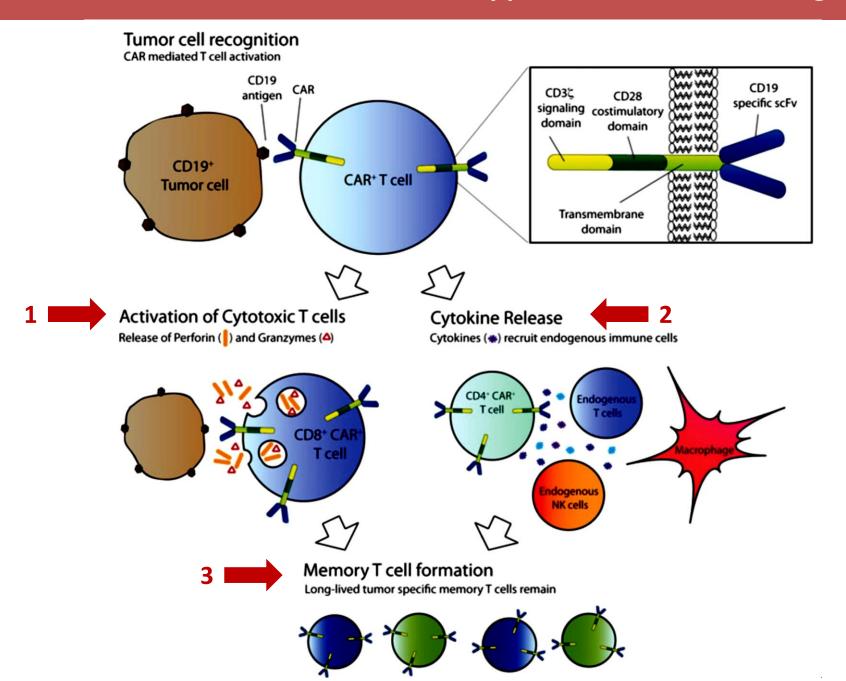


'Uncured' Refractory/relapsed DLBCL

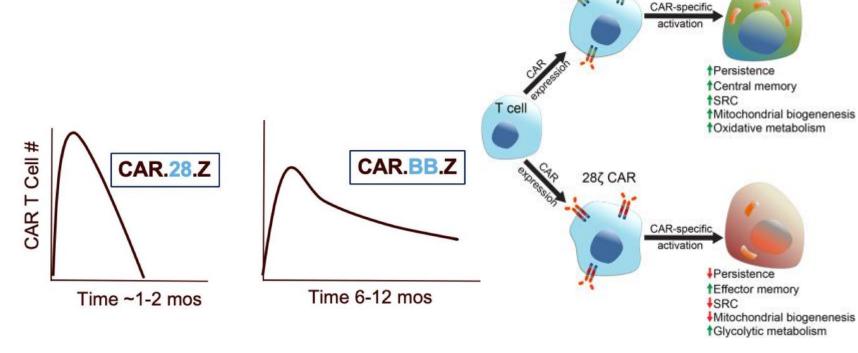
Refractory & Relapsed DLBCL

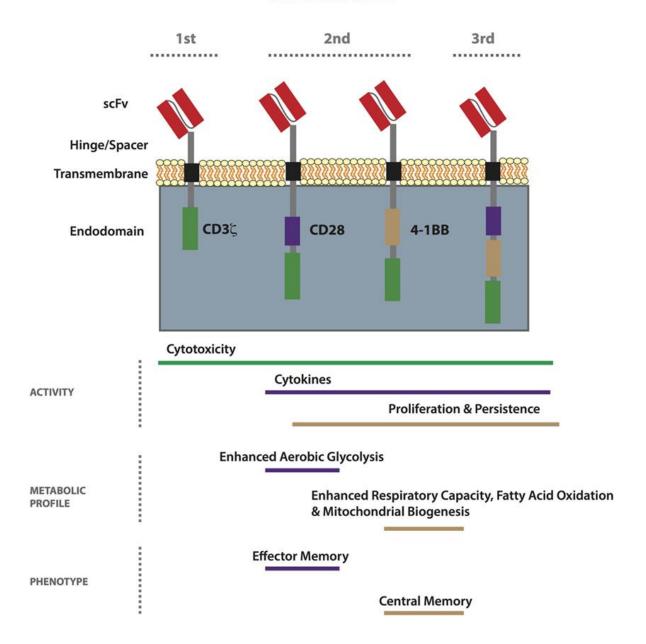

Overall Survival in Refractory DLBCL: Historical Outcomes data – SCHOLAR-1

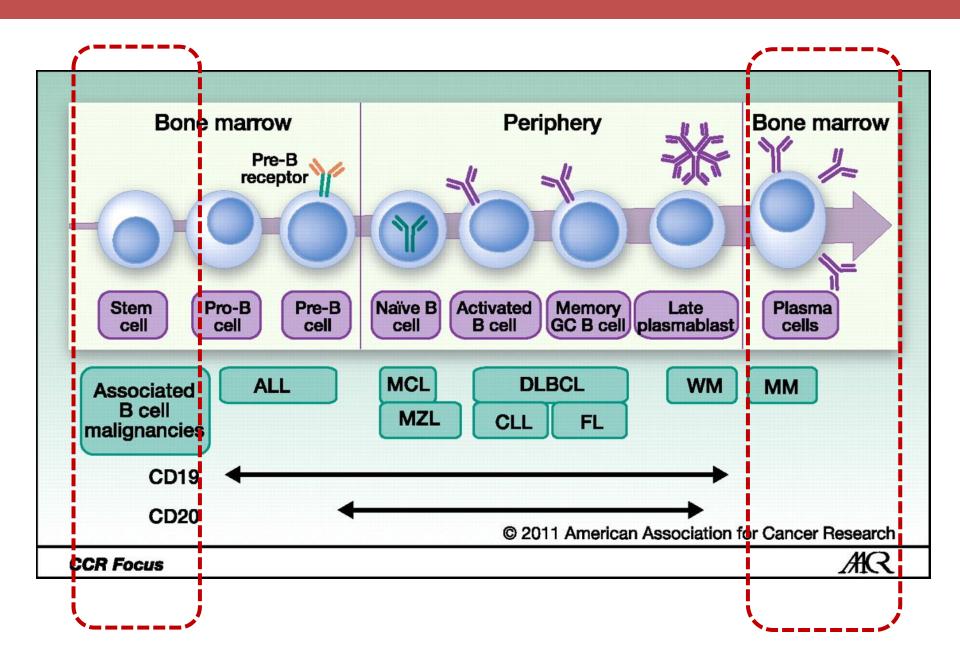



N = 636

- ORR = 26%; CR rate = 7%
- Median OS = 6.3 months

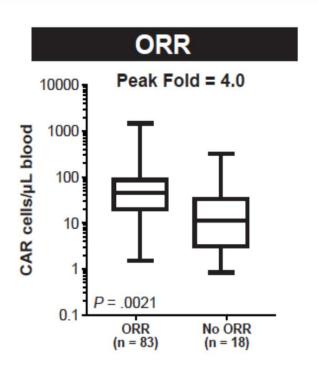

- The clinical scenario
 - The unmet needs
- CAR-T cells as a living drug
 - The idea
 - How it works
 - The logistics
- The Clinical Results
 - Registered indications
- The Toxicity& Safety Management
 - CRS
 - ICAN (Immune effector Cells Associated Neurotoxicity)
 - Other
- The Future (tomorrow)

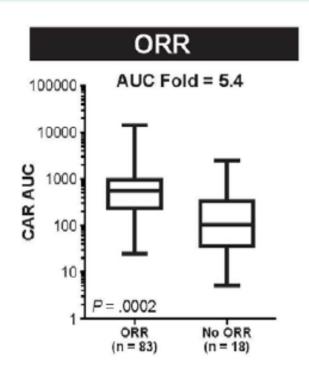


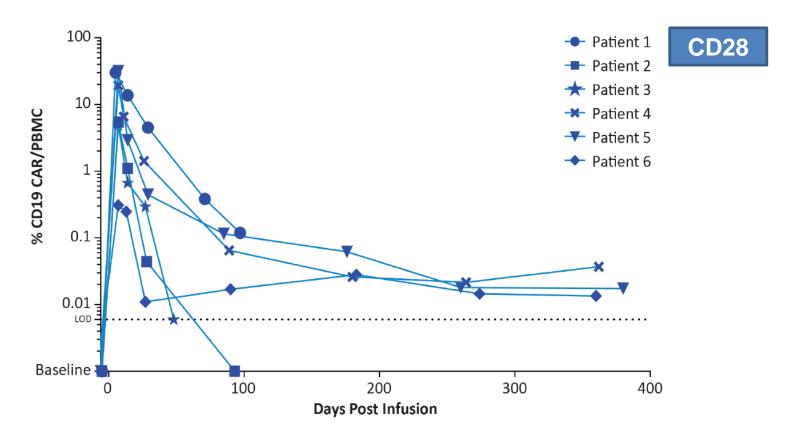


BBζ CAR

CAR GENERATIONS



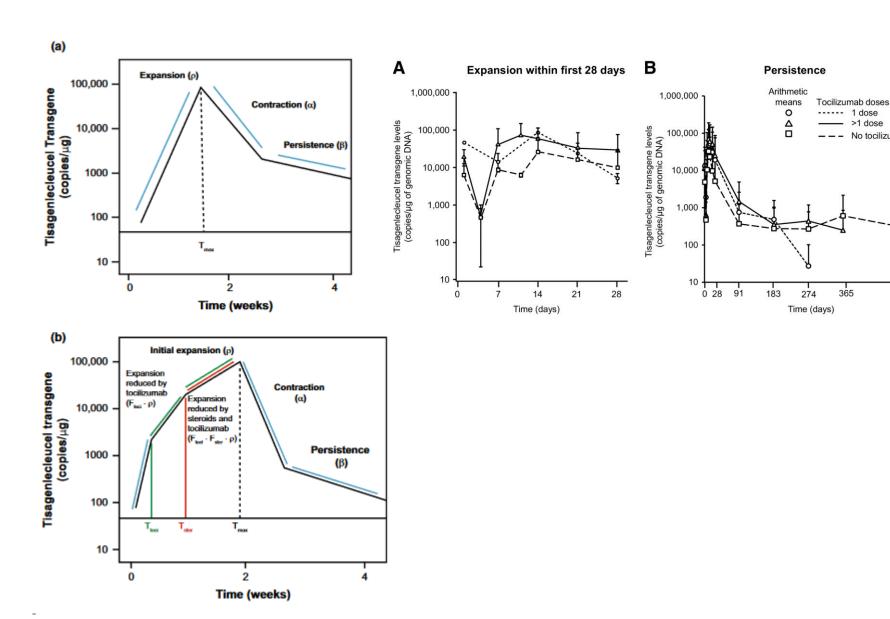

CD19 CAR T products in pivotal trials in NHL


Adapted from van der Steegen et al. Nat Rev Drug Discov, 2015

ZUMA1: CAR T-cell expansion after axi-cel infusion is associated with response CD28

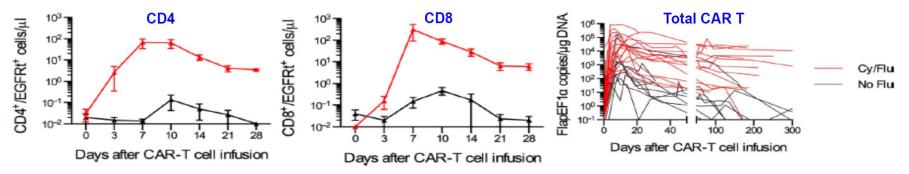
CAR T cell expansion and persistence after KTE-C19 infusion

- Peak expansion of CAR T cells observed within 2 weeks
- CAR T cells detectable one year after infusion


1 dose

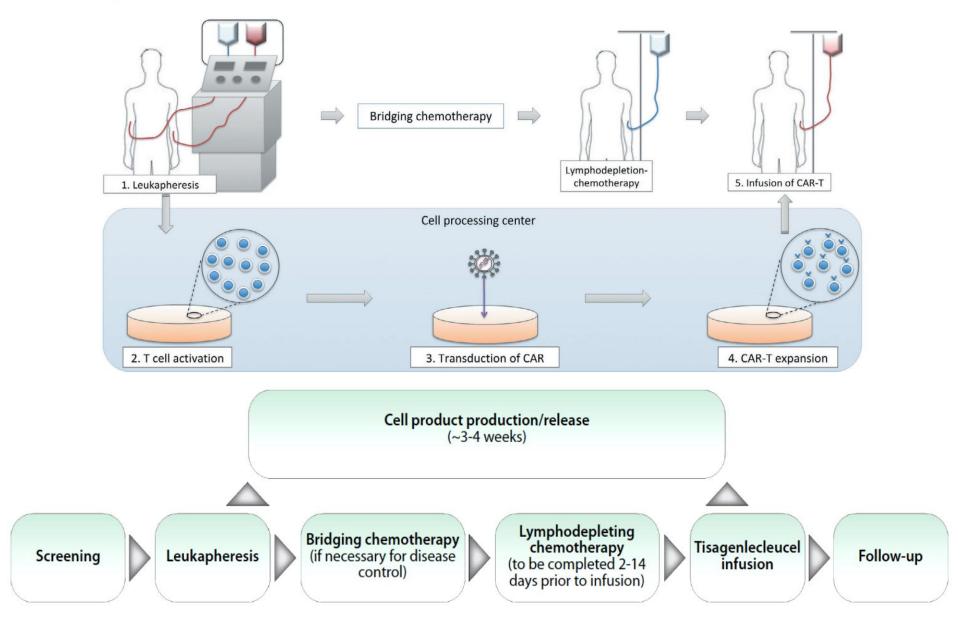
>1 dose

365


548

– No tocilizumab

Conditioning chemotherapy affects CAR T cell expansion, persistence, and clinical outcome


DLBCL, transformed LBCL, FL, MCL (CD19/CD35/4-1BB)

CAR T cells reached higher peaks and persisted longer with Cy/Flu conditioning regimen compared with Cy regimen

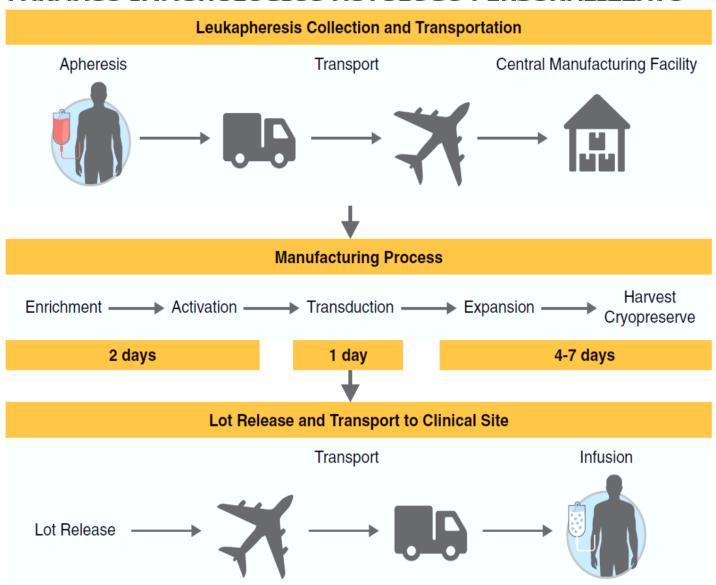

Subgroup	N	ORR	CR
Cy or Cy/E	12	50%	8%
Cy/Flu	18	72%	50%

Figure 2. Outline of CAR T-cell therapy.

Immunotherapy for Malignant Lymphoma: 2019

LE CAR-T POSSONO ESSERE CONSIDERATE COME UN 'FARMACO IMMUNOLOGICO AUTOLOGO PERSONALIZZATO'

- The clinical scenario
 - The unmet needs
- CAR-T cells as a living drug
 - The idea
 - How it works
 - The logistics
- The Clinical Results
 - Registered indications
- The Toxicity & Safety Management
 - CRS
 - ICAN (Immune effector Cells Associated Neurotoxicity)
 - Other
- The Future (tomorrow)

New frontiers in the treatment of NHL: Selected CAR-T Cell Products

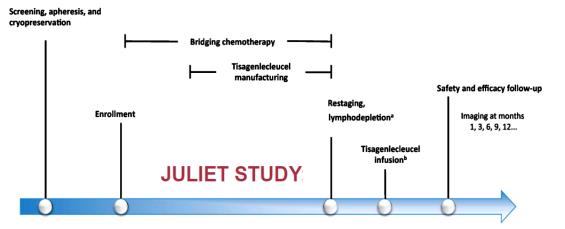
	Axicabtagene Ciloleucel (axi-cel) Kite Pharma (GILEAD)	Tisagenlecleucel (CTL019) Novartis	Lisocabtagene Maraleucel (liso-cel) Juno Therapeutics
CAR Type	CD19/CD28/CD3z	CD19/4-1BB/CD3z	CD19/4-1BB/CD3z
Costimulatory Domain	CD28	4-1BB (CD 137)	4-1BB (CD 137)
scFv	FMC63	FMC63	FMC63
Vector Delivery	Retrovirus	Lentivirus	Lentivirus
Defined Cells	No	No	CD4:CD8
Trial in NHL	ZUMA-1	JULIET	TRANSCEND

PRE-JULIET: Tisagenlecleucel Activity in DLBCL

- Single-center, pilot study at the University of Pennsylvania using CTL019 (tisagenlecleucel)
- Transient <u>encephalopathy</u> developed in approximately one in three patients and severe <u>cytokine-release syndrome</u> developed in one in five patients
- Durable remissions with a single infusion of CTL019 in r/r DLBCL and FL

Key eligibility criteria

- Adult histologically proven CD19+ relapsed or refractory DLBCL, FL or MCL
- DLBCL R/R after ASCT or ineligible for ASCT; transformation from CLL/SLL or FL allowed
- FL with ≥2 prior CIT regimens and PD <2 years after prior therapy
- ECOG PS 0 or 1


Response Rates in r/r DLBCL (N = 14)

	Month 3	Month 6
ORR	50%	50%
CR	36%	43%
PR	14%	7%

CR, complete response; ORR, overall response rate; PR, partial response

- Median response duration: not reached
- No patient in CR at 6 months had relapsed at median follow-up, 28.6 months

^a To be completed 2 to 14 days prior to tisagenlecleucel infusion:

^b Infusion conducted on an in- or outpatient basis at investigator discretion.

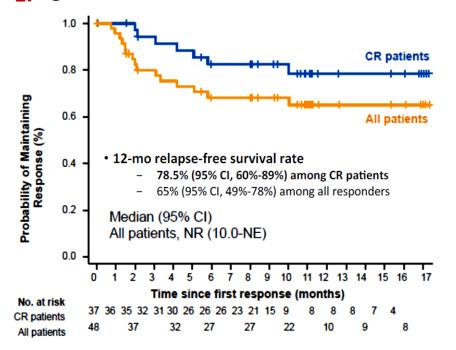
	Patients (N = 111)
Age, median (range), years	56 (22-76)
≥ 65 years, %	23
ECOG performance status 0/1, %	55/45
Central histology review	
Diffuse large B-cell lymphoma, %	79
Transformed follicular lymphoma, %	19
Double/triple hits in CMYC/BCL2/BCL6 genes, %	17 ^a
Cell of origin ^b	
Germinal/Nongerminal center B-cell type, %	57/41
Number of prior lines of antineoplastic therapy, %	
2/3/4-6	44/31/21
IPI ≥ 2 at study entry, %	72
Refractory/relapsed to last therapy, %	55/45
Prior auto-SCT, %	49
Bridging chemotherapy, n	102
Lymphodepleting chemotherapy, n	103

Key eligibility criteria

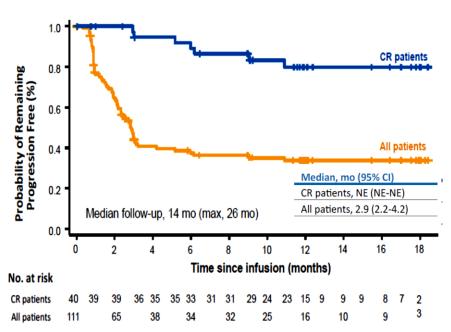
- ≥ 18 years of age
- Central confirmation of histology
- ≥ 2 prior lines of therapy for DLBCL
- PD after or ineligible for auto-SCT
- No prior anti-CD19 therapy
- No active CNS involvement

Endpoints

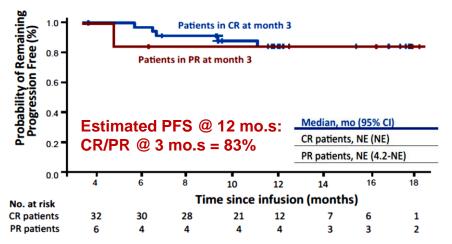
- Primary endpoint: best overall response rate (ORR: CR + PR)
 - Lugano criteria used for response assessment by IRC¹
- Secondary endpoints: DOR, OS, safety

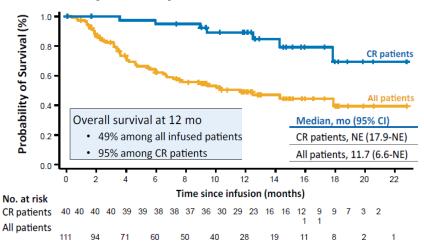

⁻fludarabine (25 mg/m2)/cyclophosphamide (250 mg/m2) x 3 days or bendamustine (90 mg/m2) x 2 days

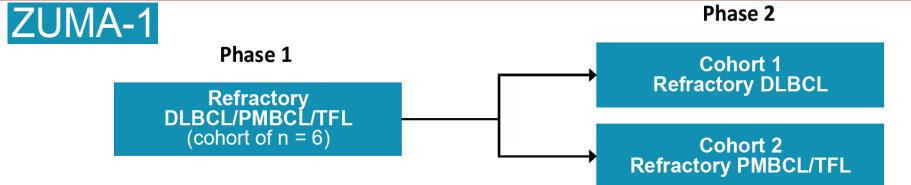
Response Rate, %	Best Overall Response Rate (N = 93)	Response at 3 Months (N = 93)	Response at 6 Months (n = 93)
ORR (CR + PR)	52ª	38	33
CR	40	32	29
PR	12	5	3


 $^{^{}a}$ P < .0001; (95% CI, 42%-64%). Null hypothesis of ORR ≤ 20%.

- Durability of responses is shown by the stability between 3 and 6 month response rates
- Response at 3 months is indicative of the long term benefit of this treatment
- No differences in outcomes based on lymphodepleting therapy used


1. @14 mo.s of FU median DOR not reached

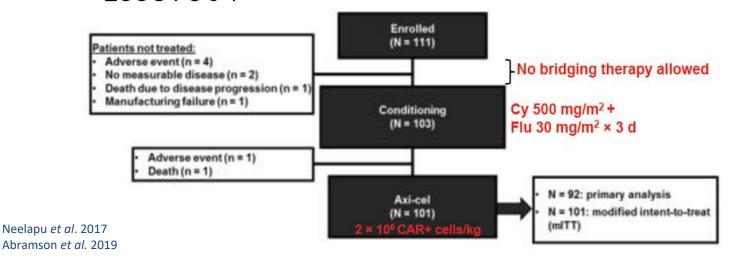

2. Median PFS not reached in CR pts.


3. Response @ 3 mo.s may predict a durable benefit

4. 74% of pts. relapse-free @

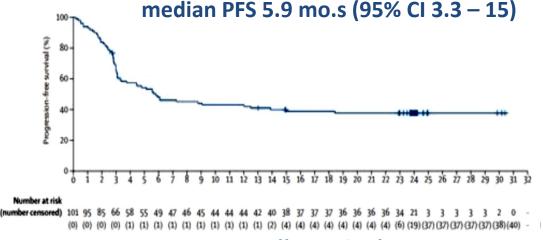
Axicabtagene Ciloleucel (axi-cel; Kite-Gilead): ZUMA Trials

Eligibility criteria

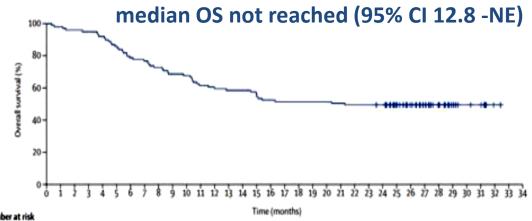

- Aggressive NHL: DLBCL, PMBCL, TFL
- Chemotherapy-refractory disease: no response to last chemotherapy or relapse ≤12 months post-ASCT
- Prior anti-CD20 mAb and anthracycline
- FCOG PS 0-1

Primary end point

 Phase 2: Objective response rate (ORR)

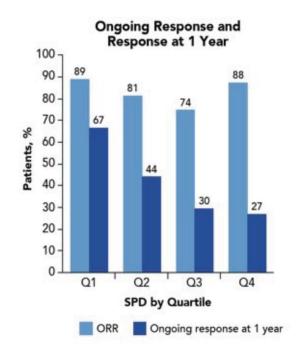

Key secondary end points

 DOR, OS, safety, levels of CAR T and cytokines



Axicabtagene Ciloleucel (axi-cel; Kite-Gilead): ZUMA Trials

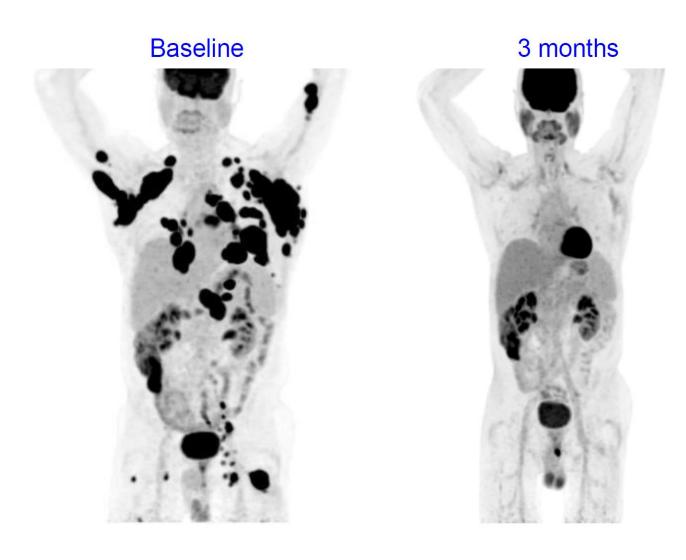
Progression-Free Survival



Overall Survival

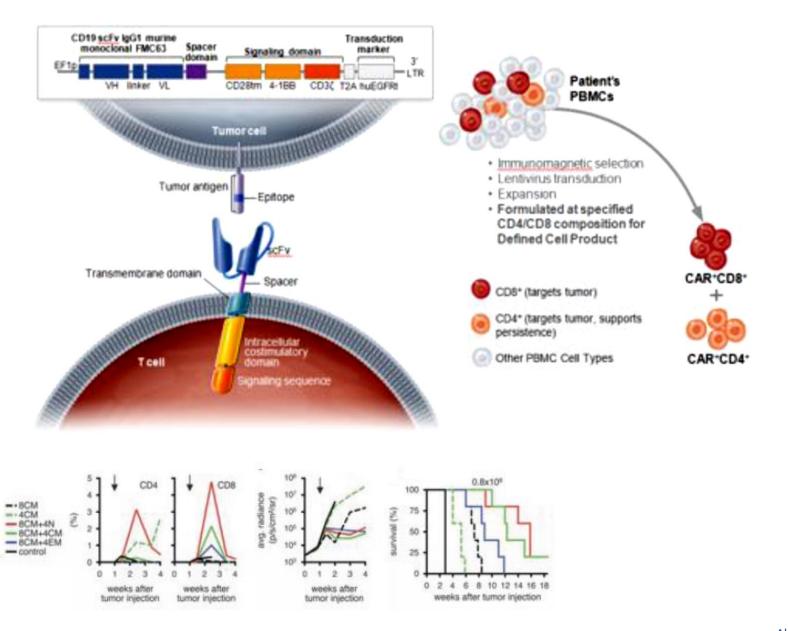
Zuma-1 Trial (Phase 2 part): @ median FU of 27 mo.s

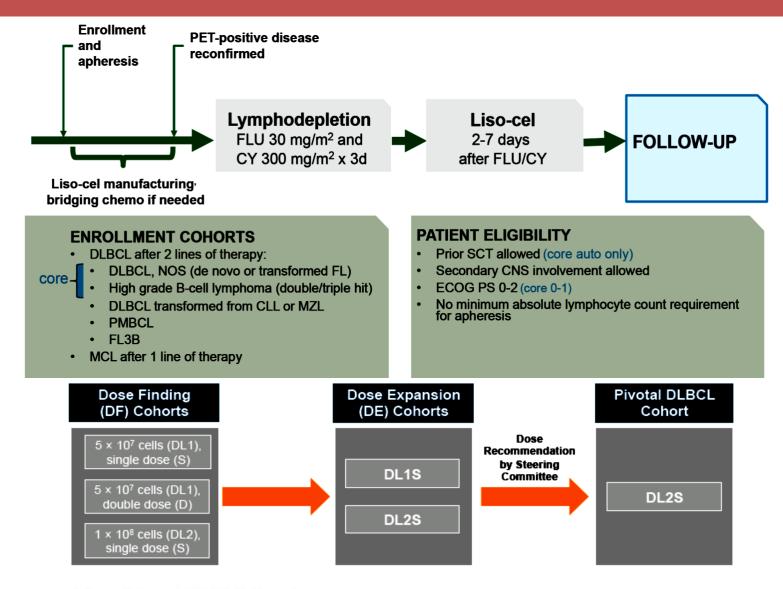
- N = 101
- ORR = 82%; CR rate = 54%
- 52% @18 months


Axicabtagene Ciloleucel (axi-cel; Kite-Gilead): ZUMA Trials

Cytopenia	Any grade (%)	Grade 3-4 (%)
Any cytopenia	93	86
Neutropenia	86	80
Thrombocytopenia	62	40
Anemia	68	45
Cytopenia after month 3	34	17
Neutropenia	19	11
Thrombocytopenia	18	7
Anemia	18	3 ZUMA-1

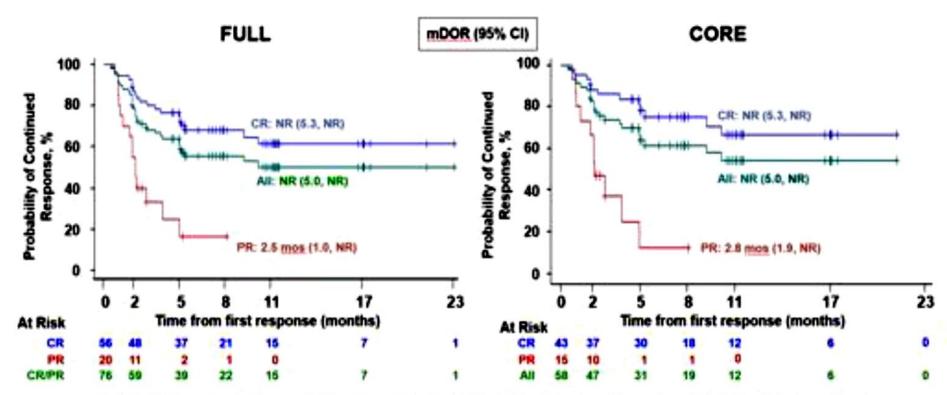
n	108
Any CRS Median time to onset	93% 1 day
≥ Gr 3 CRS (Lee criteria)	13%
Any neurotoxicity	64%
≥ Gr 3 neurotoxicity	28%
Tocilizumab	43%
Steroids	27%


62 yo M with DLBCL Prior therapies


- R-CHOP
- Radiation
- R-GDP
- Radiation
- R-ICE
- R-Revlimid

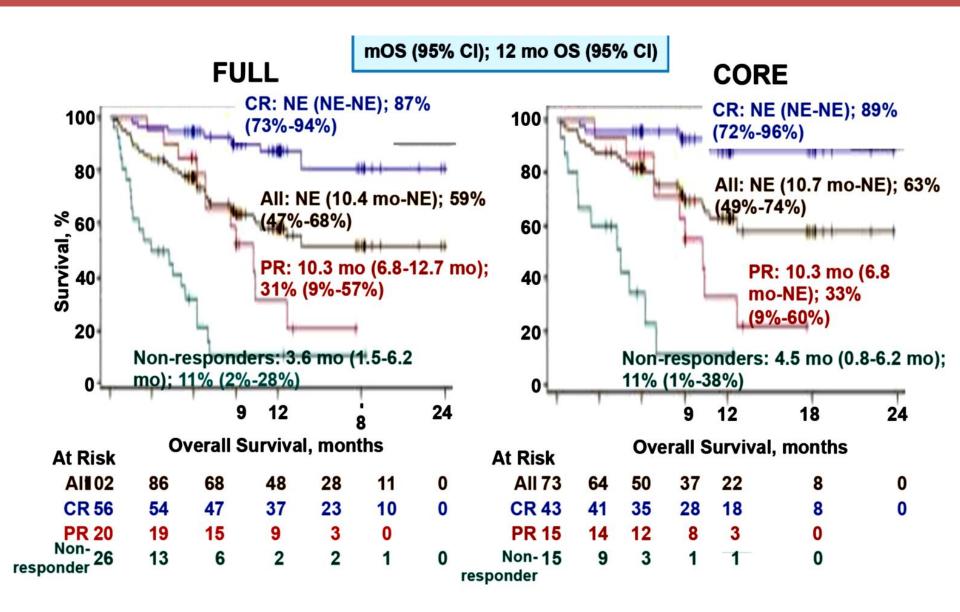
Remains in CR at 9 months following infusion of KTE-C19, ZUMA-1 trial.

Lisocabtagene maraleucel (liso-cel, JCAR017, Juno): TRASCEND Trials



Data presented from DF and DE DLBCL cohorts

- 102 patients treated (FULL)
- 73 patients reflective of pivotal patient population (CORE)

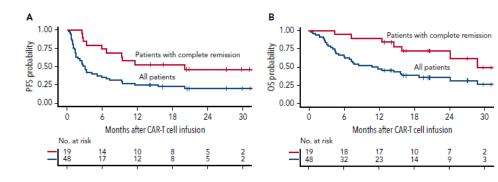

Characteristic	FULL N=102	CORE N=73
Median Age, years (range)	61 (20-82)	60 (20-82)
Double/triple hit	19%	22%
CNS involvement	2%	1%
Median prior lines (range)	3 (1-8)	3 (2-8)
Chemorefractory	70%	67%
Any HSCT	40%	38%
Allogeneic	5%	0
Autologous	37%	38%

	All Subjects n=102	CORE DL 1 SD n=33	CORE DL 2 SD n=37
Best ORR	75%	79%	78%
Best CRR	55%	55%	62%
6 month ORR	40%	42%	49%
6 month CRR	34%	33%	46%

In CORE population, 88% of patients with CR at 3 months stay in CR at 6 months; 93% of patients in response at 6 months stay in response for a longer-term

Median follow-up: 8 mos

Median follow-up: 8 mos


New frontiers in the treatment of non-Hodgkin Lymphomas

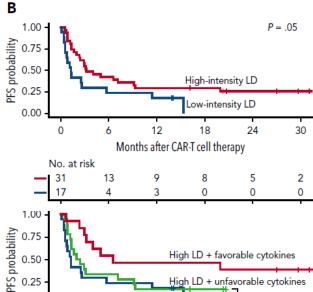
Trial (name/ID)	DX	N	Construct	LDC	Cell Dose	ORR	CR	DOR	OS
KITE; KTE-C19 (ax	KITE; KTE-C19 (axicabtagene ciloleucel)								
ZUMA-1 ⁵² Phase 1	DLCBL	7	CD3z/CD28	Flu/Cy	$2 \times 10^6/kg$	71%	57%	-	-
ZUMA-1 ²³ Phase 2	DLBCL, tFL, PMBCL	101	CD3z/CD28	Flu/Cy	$2 \times 10^6/kg$	82%	54%	11.1 mo	52% @ 18 mo
NOVARTIS; CTLO	19 (tisagenlecleucel)								
JULIET ²⁶ Phase 2	DLCBL	99	CD3z/4-1BB	Flu/Cy Benda	$0.1-6 \times 10^8$	53%	39.5%	NR	64.5% @ 6 mo
JUNO; JCAR017 (lisocabtagene maraceu	icel)							
TRANSCEND ⁸⁵ Phase 1	DLBCL; tFL (CORE cohort)	49	CD3z/4-1BB	Flu/Cy	1 × 10 ⁸	84%	61%	9.2 mo	88% @ 6 mo
TRANSCEND ⁸⁵ Phase 1	All DLBCL subtypes (FULL cohort)	68	CD3z/4-1BB	Flu/Cy	0.5-1 × 10 ⁸	74%	52%	5.0 mo	75% @ 6 mo

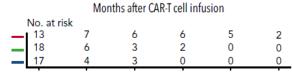
New frontiers in the treatment of NHL: CAR-T Efficacy Predictors

The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells

Alexandre V. Hirayama, ¹ Jordan Gauthier, ¹ Kevin A. Hay, ^{1,2} Jenna M. Voutsinas, ¹ Qian Wu, ¹ Ted Gooley, ¹ Daniel Li, ³ Sindhu Cherian, ⁴ Xueyan Chen, ⁴ Barbara S. Pender, ¹ Reed M. Hawkins, ¹ Aesha Vakil, ¹ Rachel N. Steinmetz, ¹ Utkarsh H. Acharya, ^{1,5} Ryan D. Cassaday, ^{1,5} Aude G. Chapuis, ^{1,5} Tejaswini M. Dhawale, ⁵ Paul C. Hendrie, ⁵ Hans-Peter Kiem, ^{1,5} Ryan C. Lynch, ^{1,5} Jorge Ramos, ^{1,5} Mazyar Shadman, ^{1,5} Brian G. Till, ^{1,5} Stanley R. Riddell, ^{1,5} David G. Maloney, ^{1,5} and Cameron J. Turtle^{1,5}


	Pre-LD	Day 0 (pre-CAR-T)	Day +4 (post-CAR-T)	PFS Probability
LDH	< median			Higher
Favorable Cytokine Profile*		MCP-1 > median	Peak IL-7 > median	Higher
Hi-Intensity Lymphodepletion (LD)				Higher
With Favorable Cytokine Prolfile				Higher
With Unfavorable Cytokine Profile				Lower


Cy/Flu-based (Hi-intensity: Cy 60 mg/kg; Low-intensity Cy #1500 mg/m2 or 30 mg/kg total)

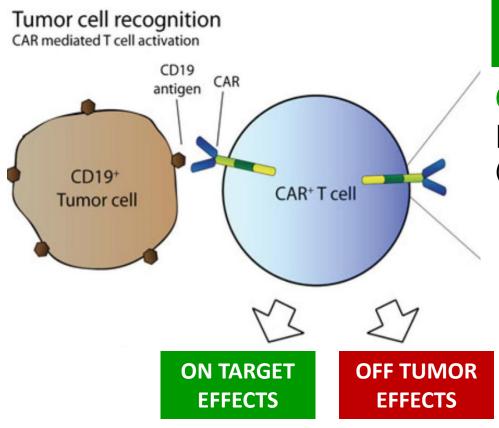

LDH, MCP-1, and IL-7 are independently associated with PFS in patients with aggressive NHL after CD19 CAR T-cell immunotherapy.

KEY POINTS

 Higher intensity of cyclophosphamide and fludarabine lymphodepletion is associated with higher probability of a favorable cytokine profile.

12

0.00


18

P = .4

24

30

- The clinical scenario
 - The unmet needs
- CAR-T cells as a living drug
 - The idea
 - How it works
 - The logistics
- The Clinical Results
 - Registered indications
- The Toxicity & Safety Management
 - CRS
 - ICAN (Immune effector Cells Associated Neurotoxicity)
 - Other
- The Future (tomorrow)

CD19 on tumor cells

"CLASS" EFFECTS

Cytokine Release Syndrome Neurologic Toxicity ON TARGET EFFECTS

OFF TUMOR EFFECTS

CRS

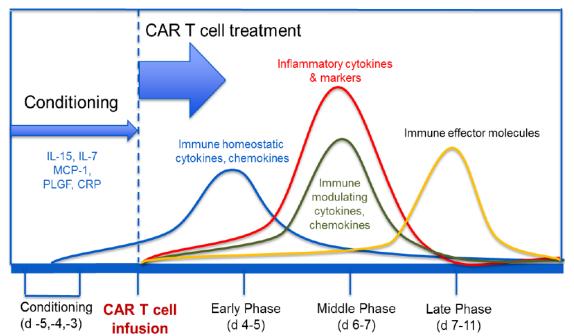
Post infusion

(15-50% G3/G4)

ICAN/CRES

(5-30%)

Biphasic


- Early (day 0 5)
 (associated to CRS)
- Delayed (day >5) (when CRS fades)

B-cell aplasia Cytopenias Infections

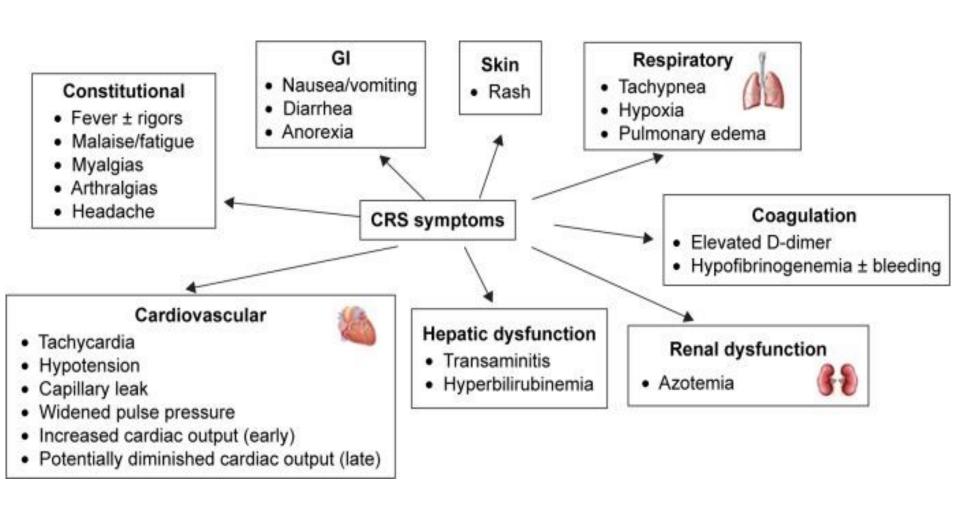
Delayed
Off-tumor
Lymphodepleting conditioning

CD19 on non-tumor cells

Cytokine pattern after CAR T infusion

Symptoms

Onset 1-14 days after infusion, duration 1-10 days Fevers come first and get very high (105°F/41°C) Myalgias, fatigue, anorexia, capillary leak, hypoxia, hypotension


Management

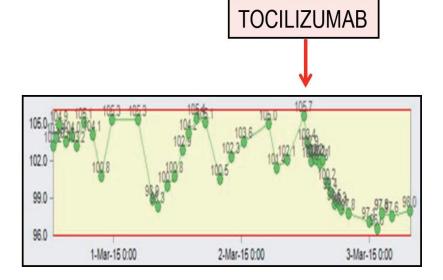
Supportive care
Anti-cytokine interventions

Immune homeostatic cytokines	Inflammatory cytokines and markers	Immune modulating cytokines	Chemokines	Other markers
IL-15	(IL-6)	IL-13	IL-8	PLGF
IL-7	IL-1α	IL-4	MCP-1	sICAM-1
IL-2	IL-1β	IL-5	MCP-4	sVCAM-1
	IL-17α	IL-10	MIP-1α	VEGF
Immune effectors	TNFα	IFNγ	MIP-1β	VEGF-C
Granzyme A	TNFβ	IL-12p40	IP-10	VEGF-D
Granzyme B	GM-CSF	IL-12p70	TARC	FGF-2
sFASL	CRP	IL-16	Eotaxin	
Perforin	SAA		Eotaxin-3	
			MDC	

- IL6 levels correlate with degree of CRS.
- Tocilizumab, antibody binds to IL6 receptor.

Perez, et al, ASH, 2015

TOCILIZUMAB


CRS with high IL-6

TOCILIZUMAB for CRS¹:

Humanized monoclonal antibody to IL6-R
Previously FDA approved adult RA, JIA
Effective for most patients
Does not appear to impact CAR T efficacy

Patient's fever curve during CRS

NEUROLOGIC TOXICITY

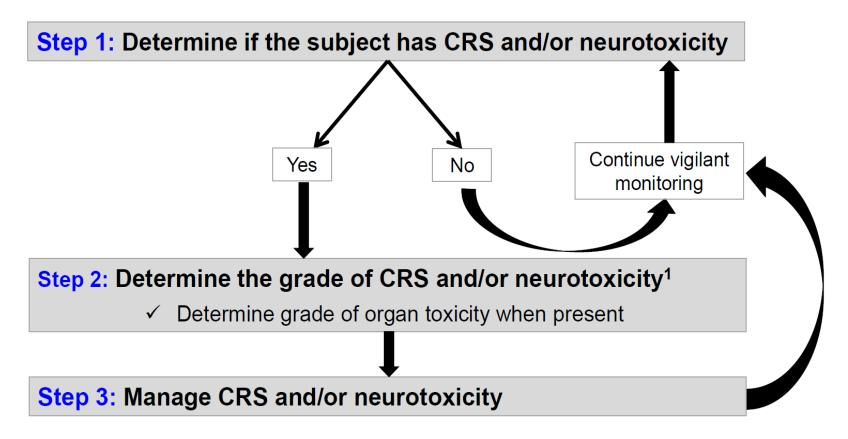
Mechanism

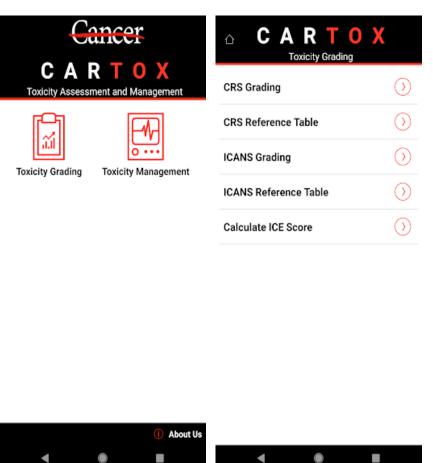
T cell vs. cytokine mediated (endothelial activation)
CAR T cells are seen in the CSF¹⁻⁵

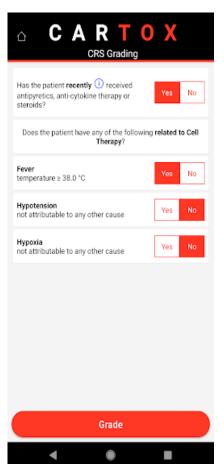
Symptoms

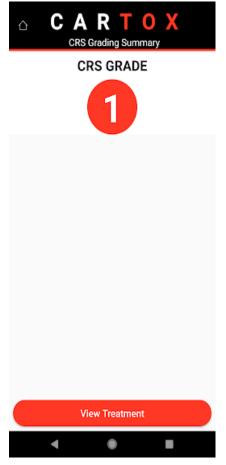
Aphasia, delirium, encephalopathy, seizures

Management


No clear response to anti-cytokine treatment

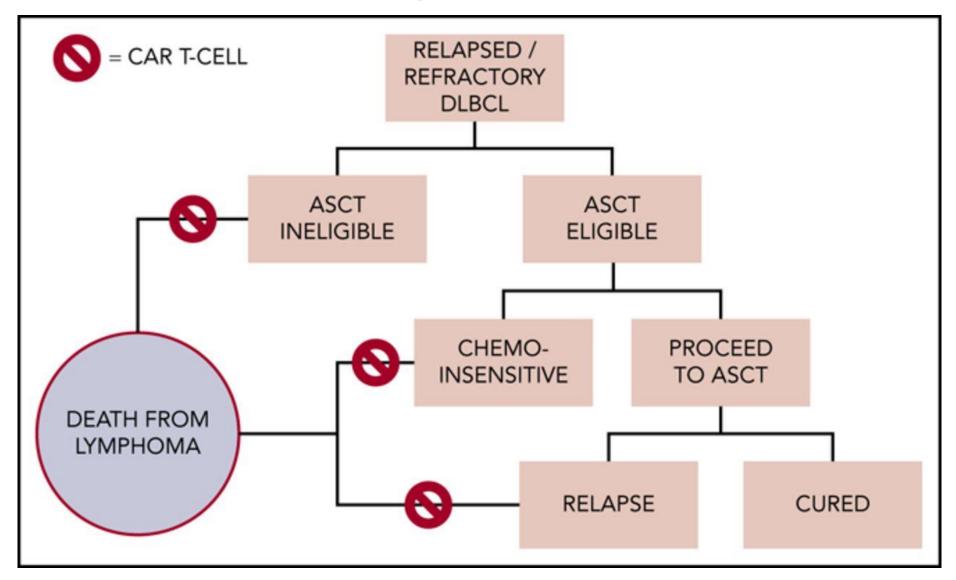

Disease	Population	Lymphodepletion	CAR-T cell product	Costimulatory domain
ALL	N = 45/pediatric	Cy or Cy/Flu	Defined composition ^c	4-1BB
ALL	N = 47/adult	Cy, Cy/E, or Cy/Flu	Defined composition ^c	4-1BB
ALL	N = 75/pediatric, young adult	Physician's discretion	Tisagenlecleucel	4-1BB
ALL	N = 53/adult	Cy or Cy/Flu	19-28z	CD28
NHL	N = 62/adult	Cy, Cy/E, or Cy/Flu	${\sf Defined\ composition}^{\sf c}$	4-1BB
NHL	N = 28/adult	Physician's discretion	CTL019 (tisagenlecleucel)	4-1BB
NHL	N = 101/adult	Cy/Flu	Axicabtagene ciloleucel	CD28
NHL	N = 91/adult	Cy/Flu	Lisocabtagene maraleucel	4-1BB
NHL	N = 111/adult	None, Cy/Flu, or bendamustine	Tisagenlecleucel	4-1BB
CLL	N = 14/adult	Physician's discretion	Tisagenlecleucel	4-1BB
CLL	N = 24/adult	Cy, Flu, or Cy/Flu	Defined composition ^c	4-1BB

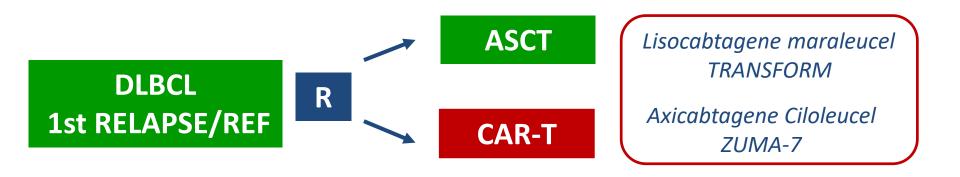

CRS events (%)	Severe CRS ^a (%)	NT events (%)	Severe NT ^b (%)
93	23	49	21 ^d
74	17	53	30 ^e
77	47	40	13
85	26	44	42 ^d
61	8	32	13 ^e
57	18	39	11
93	13	64	28 ^d
35	1	19	12
58	22	21	12
64	43	36	7
83	8	33	25 ^e


MD Anderson CARTOX: CAR Cell Therapy Toxicity Assessment and Management

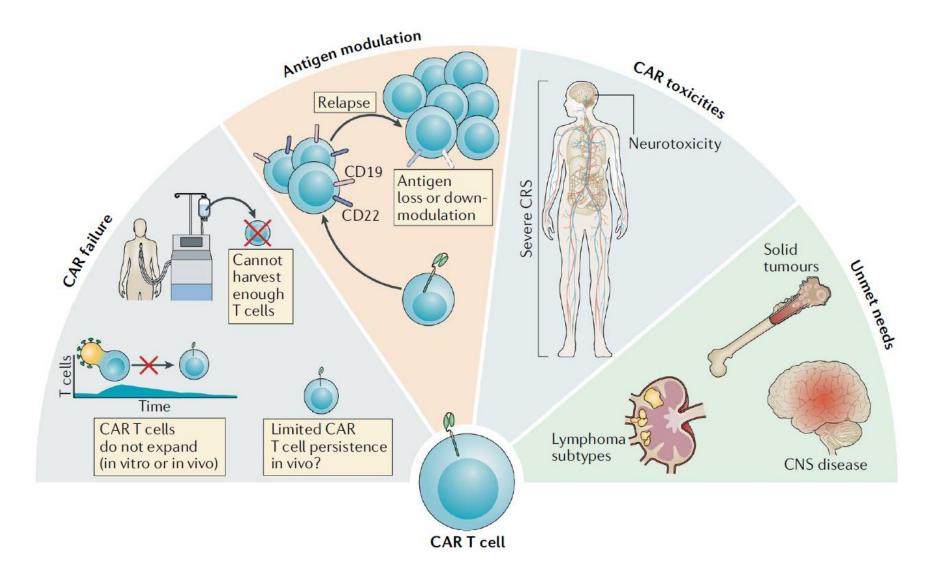
Neelapu, Tummala, Kebriaei, Wierda, Loghin, Gutierrez, Shpall.

- The clinical scenario
 - The unmet needs
- CAR-T cells as a living drug
 - The idea
 - How it works
 - The logistics
- The Clinical Results
 - Registered indications
- The Toxicity
 - CRS
 - CRES (CAR related encephalopathy syndrome); ICAN
 - Other
- The Future (tomorrow)

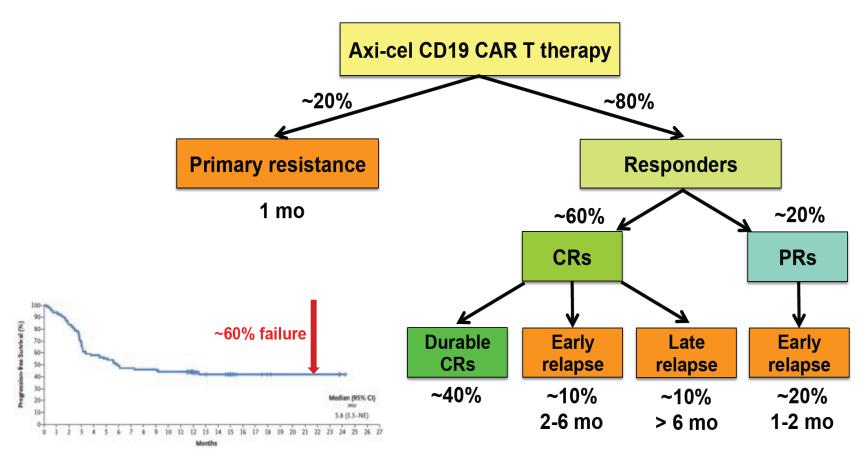

Refractory DLBCL


- Primary Refractory to R-CHOP and progressing within 6 months – CAR T-cell therapy
- Progressing within 6-24 months –
 Salvage chemotherapy
 - If PR or better ASCT
 - If progresses or response less than a PR
 - CAR T-cell therapy
- Progressing later than 24 months –
 Salvage chemotherapy followed by ASCT

Refractory & Relapsed DLBCL

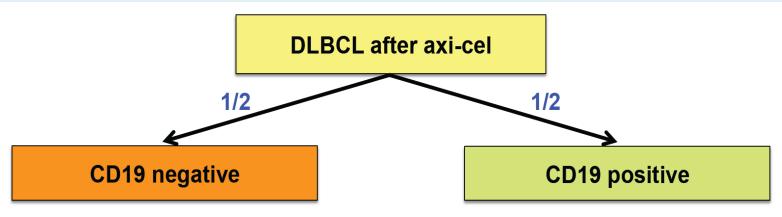


Diffuse Large B-cell Lymphoma



Immunotherapy Lymphoma 2019

Patterns of failure in DLBCL after axi-cel



Neelapu et al. N Eng J Med 2017

All numbers are rounded off

Immunotherapy Lymphoma 2019

Mechanisms of resistance to axi-cel

- Antigen escape
 - o CD19 alternative splicing
 - CD19 mutation

- Impaired T-cell fitness
 - Apheresis product
 - CAR T product
 - Host environment
 - Tumor microenvironment

Immunotherapy Lymphoma 2019

Diffuse Large B-cell Lymphoma

Alternatively spliced variants of CD19 after CAR T therapy

 At relapse, 15/16 (94%) patients assessed had CD19 loss on ELIANA trial

Maude et al, N Eng J Med 2018

Cancer Discov 2015

Convergence of Acquired Mutations and Alternative Splicing of *CD19* Enables Resistance to CART-19 Immunotherapy

Elena Sotillo¹, David M. Barrett², Kathryn L. Black¹, Asen Bagashev¹, Derek Oldridge², Glendon Wu^{1,3}, Robyn Sussman², Claudia Lanauze^{1,4}, Marco Ruella⁵, Matthew R. Gazzara^{6,7}, Nicole M. Martinez⁷, Colleen T. Harrington^{1,4}, Elaine Y. Chung¹, Jessica Perazzelli², Ted J. Hofmann², Shannon L. Maude² Pichai Raman^{1,2}, Alejandro Barrera⁶, Saar Gill^{5,8}, Simon F. Lacey⁸, Jan J. Melenhorst⁸, David Allman⁹, Elad Jacoby¹⁰, Terry Fry¹⁰, Crystal Mackall¹⁰, Yoseph Barash⁵, Kristen W. Lynch⁶, John M. Maris², Stephan A. Grupp², and Andrei Thomas-Tikhonenko^{1,3,4,9}

Loss of exon 2 or exons 5-6

Predicted protein products for CD19 isoforms

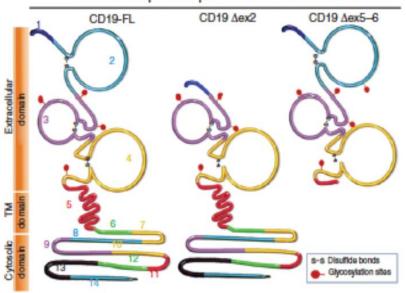
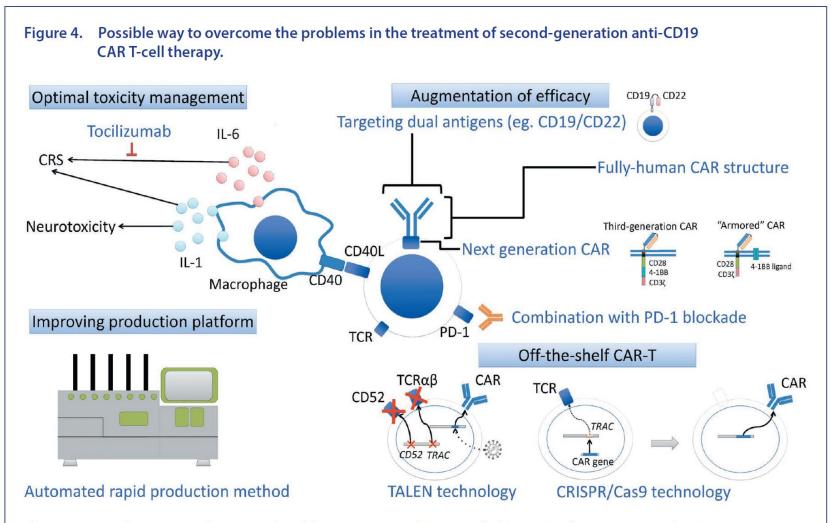



Table 1 | Summary of antigen loss or modulation detected in published clinical trials of CAR T cell therapy

Target antigen	Publication	Number of patients treated	Number of CRs (%)	Number of patients with antigen modulation (%)	Median time to antigen loss or modulation (months)	Comments
CD19	Lee et al. ⁷	21	14 (67)	2 (14)	~6	10 of 12 patients who were MRD-negative after CAR T cell therapy subsequently underwent HSCT
	Maude et al. ⁶	30	27 (90)	4 (15)	~3	None
	Gardner et al.8	43	40 (93)	7 (18)	~3	11 of 40 subsequently underwent HSCT
	Park et al. ⁹	53	44 (83)	4 (9)	Unknown	None
	Maude et al. ¹⁰	75	61 (81)	15 (25)	Unknown	None
CD22	Fry et al. ¹⁵	21	12 (57)	7 (58)	~3	None

CAR, chimeric antigen receptor; CRs, complete responses; HSCT, haematopoietic stem cell transplantation; MRD, minimal residual disease.

There are several controversial issues and problems awaiting solutions, including optimal management of toxicities, overcoming relapsed/refractory disease after CART-cell therapy, and improving CAR-T manufacturing platform. The ways to overcome these problems are currently investigated.

CAR, chimeric antigen receptor; CRISPR/Cas9, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9; CRS, cytokine-release syndrome; PD-1, programmed death 1; TALEN, transcription activator-like effector nuclease; TCR, T-cell receptor.

Table 2 Active clinical trials of multi-antigen CAR T cells	in the USA and UK
Table 2 Active clinical trials of matti-antique CAR i cetts	

Target antigens	Disease	Age group (years)	CAR construct signalling domains	Treatment centre	ClinicalTrials.gov reference number
CD19 and CD22	ALL and NHL	1–26	CD3ζ–4-1BB (combinatorial approach with anti-CD19 CAR T cells, anti-CD22 CAR T cells and co-transduced anti-CD19 and anti-CD22 CAR T cells)	Seattle Children's Hospital (Seattle, WA, USA)	NCT03330691 (PLAT-05)
	ALL	1–30	CD3ζ-4-1BB	Lucile Packard Children's Hospital, Stanford University (Palo Alto, CA, USA)	NCT03241940
	ALL and DLBCL	≥18	CD3ζ-4-1BB	Stanford University (Palo Alto, CA, USA)	NCT03233854
	ALL and NHL	3–30	CD3ζ–4-1BB	National Cancer Institute (Rockville, MD, USA)	NCT03448393
	ALL	1–24	CD3ζ–OX40 (CD19) and CD3ζ–4-1BB (CD22)	Great Ormond Street Hospital (London, UK)	NCT03289455
CD19 and CD20	NHL and CLL	18–70	CD3ζ–4-1BB	Medical College of Wisconsin (Milwaukee, WI, USA)	NCT03019055

Cancer cell-associated targets recognized by CARS

Clinical stage:

BCMA, CD19, CD20, CD22, CD30, CD33, CD123, CD133, CEA, EGFR, EGFRvIII, EphA2, ErbB family, GPC3, HER2 (ERBB2), FAP, FRα, GD2, Igx, IL13Rα2, Mesothelin, Muc1, PSMA, ROR1, VEGFR2

Pre-clinical stage:

B7-H3 (CD276), B7H6 (NCR3LG1), CD5, CD23, CD70, CSPG4, EpCAM, GD3, HLA-A1+MAGE, IL11Rα, Lewis-Y, Muc16, NKG2D ligands, PSCA, TAG72

Antigen recognition module

- mAb-derived scFv
- tag-specific scFv (peptide, FITC)
- extracellular part of a ligand/receptor pair
- peptide/DARPin/VHH/VLR

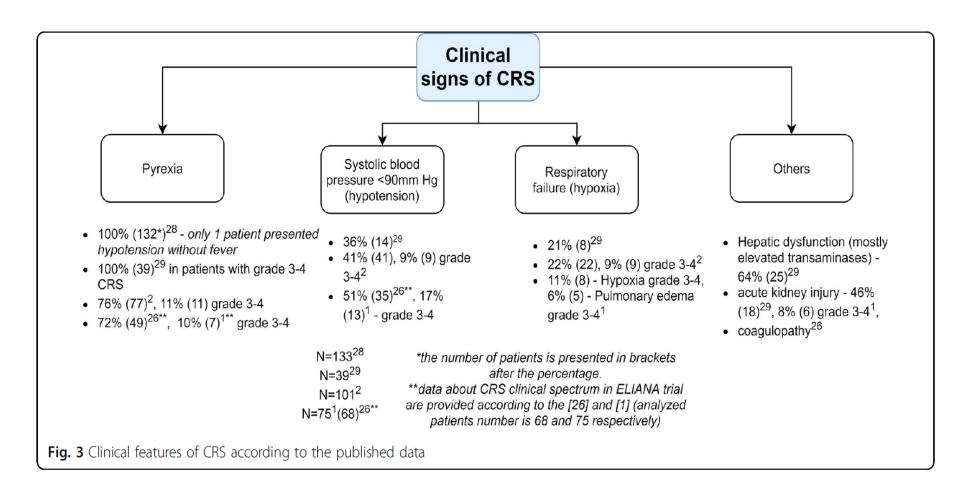
- Hinge/Spacer module
- CD8α
- lgG1/lgG4
- tNGFR

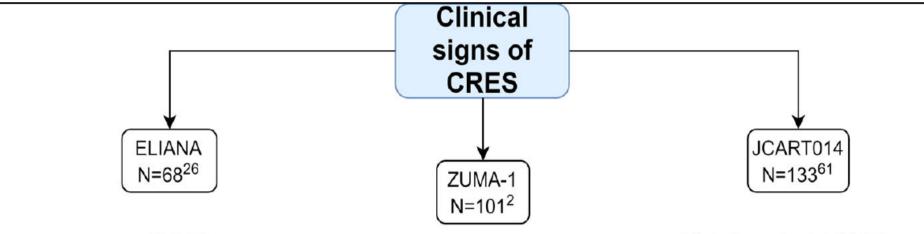
Transmembrane module

- CD8α
- CD28
- CD3t

Signaling module

- CD35 (g1)
- 4-1BB-CD35 (g2)
- CD28-CD35 (g2)
- 4-1BB-CD28-CD35 (q3)





Specialità Farmaceutiche a base di CAR-T cells (Kymriah; Yescarta) approvate dall'EMA

PRODOTTO	PRODUTTORE / DISTRIBUTORE	INDICAZIONE EMA
Tisagenlecleucel	Novartis Pharma WYMRIAH** (tisagenlecleucel) Suspension (trisagenlecleucel) for fr/ infusion	 Pazienti pediatrici e giovani adulti fino a 25 anni di età con leucemia linfoblastica acuta (LLA) a cellule B che è refrattaria, in recidiva posttrapianto o in seconda o ulteriore recidiva. Pazienti adulti con linfoma diffuso a grandi cellule B (DLBCL) in recidiva o refrattario dopo due o più linee di terapia sistemica.
Axicabtagene ciloleucel	Kite Pharma Gilead PESCARTA* (axicabtagene ciloleucel) for redecions	Pazienti adulti con linfoma diffuso a grandi cellule B refrattario o recidivante (diffuse large B-cell lymphoma, DLBCL) e linfoma primitivo del mediastino a grandi cellule B (primary mediastinal large B-cell lymphoma, PMBCL), dopo due o più linee di terapia sistemica.

- 44% (30*)
- in 6 patients CRES occurred after CRS resolution
- serious neurotoxicity (encephalopathy, delirium, seizures, focal deficits) analyzed only

*the number of patients is presented in brackets after the percentage

64% (65), grade≥3 28% (28)

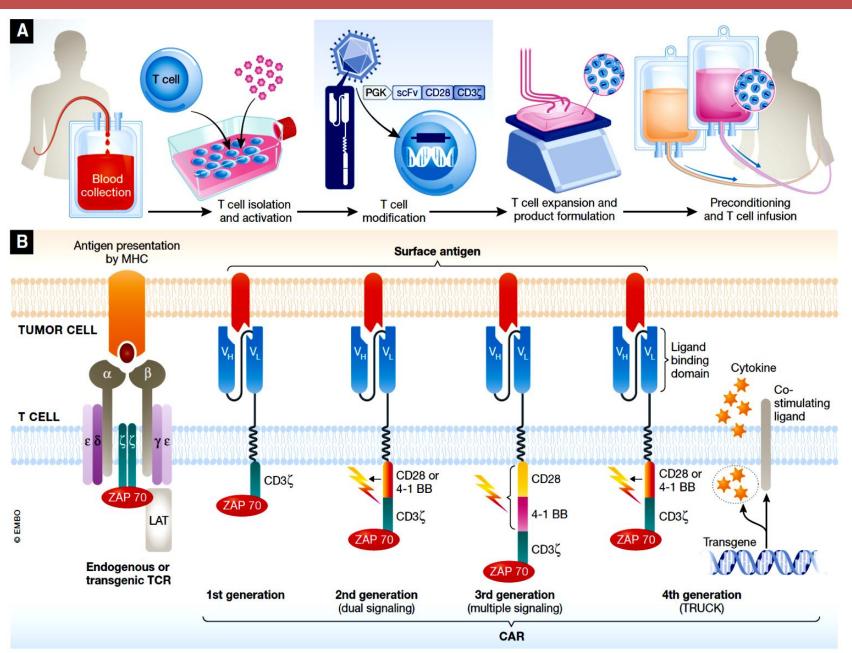
Encephalopathy 34% (34) Confusional state 29% (29) Aphasia 18% (18) Somnolence 15% (15) Tremor 29% (29) 40% (53), grade≥3 21% (28)

delirium with preserved alertness 26% (35)

Headache 21% (29)

Decreased consciousness 10% (13)

Language disturbance 13% (18)


Seizures 3% (4)

Intracranial hemorrhage >1% (1)

Refractory DLBCL

- Primary Refractory to R-CHOP and progressing within 6 months:
 - CAR T-cell therapy
- Progressing within 6-24 months:
 - Salvage chemotherapy
 - If PR or better ASCT
 - If progresses or response less than a PR
 - CAR T-cell therapy
- Progressing later than 24 months:
 Salvage chemotherapy followed by ASCT

New frontiers in the treatment of NHL: CAR-T cells

New frontiers in the treatment of non-Hodgkin Lymphomas

Trial (name/ID)	DX	N	CRS ≥gr3	CRES ≥gr3	Notes
KITE; KTE-C19 (ax	kicabtagene ciloleucel)				
ZUMA-1 ⁵² Phase 1	DLCBL	7	14%	57%	3 pts w/ ongoing CR at 12 ⁺ mo
ZUMA-1 ²³ Phase 2	DLBCL, tFL, PMBCL	101	13%	28%	40% CR @ 1 y 3 deaths from SAE
NOVARTIS; CTL0	19 (tisagenlecleucel)				
JULIET ²⁶ Phase 2	DLCBL	99	23%	12%	30% CR @ 6 mo
JUNO; JCAR017 (lisocabtagene maraceu	icel)			
TRANSCEND ⁸⁵ Phase 1	DLBCL; tFL (CORE cohort)	49	_	-	52% CR @ 6 mo
TRANSCEND ⁸⁵ Phase 1	All DLBCL subtypes (FULL cohort)	68	1%	14%	Higher 3 mo ORR/ CR seen w/ DL2

Immunotherapy for Malignant Lymphoma: 2019

Erogazione delle terapie a base di CAR-T cells. Activity plan e competenze

ACTIVITY PLAN	FIGURE PROFESSIONALI	STRUTTURE COINVOLTE
Valutazione candidabilità del paziente alla terapia con CAR-T	 Medico Ematologo con competenza specifica nelle patologie in indicazione e nella gestione delle terapie CAR-T Study Manager/centro erogatore 	Ematologia Oncologica, Unità clinica
Fase di aferesi (generazione del prodotto cellulare)	- Medico Trasfusionista- Team infermieristico di aferesi	Medicina Trasfusionale, Unità aferetica
Fase di spedizione del prodotto cellulare alle Officine Farmaceutiche delle Ditte titolari dell'AIC	- Medico trasfusionista- Biologo & Team Laboratorio GMP	Medicina Trasfusionale, Unità di Manipolazione e Criopreservazione Cellulare
Fase di ponte «Bridging» tra aferesi e reinfusione CAR-T (terapia linfodepletiva)	 Medico Ematologo con competenza specifica nelle patologie in indicazione e nella gestione delle terapie CAR-T Team infermieristico dedicato 	Ematologia Oncologica, Unità clinica
Fase di ricezione/stoccaggio del prodotto farmaceutico a base di CAR-T (AIC)	- Farmacista ospedaliero dedicato - Medico Trasfusionista- Team Laboratorio GMP	Farmacia, Unità GMP Medicina Trasfusionale, Unità di Manipolazione e Criopreservazione
Fase di infusione	- Medico Ematologo con competenza nella gestione delle terapie CAR-T- Biologo & Team Laboratorio GMP - Team infermieristico dedicato	Ematologia Oncologica, Unità clinica Medicina Trasfusionale, Unità di Manipolazione e Criopreservazione Cellulare
Fase precoce post reinfusione (dal giorno 0 al giorno +30)	 Medico Ematologo con competenza nella gestione delle terapie CAR-T- Medico intensivista/rianimatore Neurologo- Team infermieristico dedicato Farmacista ospedaliero dedicato 	Ematologia Oncologica, Unità clinica Anestesia/rianimazione, Unità clinica dedicata Farmacia
Fase tardiva post reinfusione (dal giorno +30 e durante il follow up lungo termine)	- Medico Ematologo con competenza nella gestione delle terapie CAR-T- Team infermieristico dedicato (outpatient)- Medico Radiologo, Medico Nucleare	Ematologia Oncologica, Unità clinica e ambulatorio/DH Radiologia Medicina Nucleare