

Valvulopatie ed imaging multimodale

HOT TOPICS IN CARDIOLOGIA 2021

27 e 28 Settembre Sede della Camera di Commercio di Napoli

Sergio Berti

Fondazione C.N.R.- Regione Toscana "G. Monasterio" berti@ftgm.it

> Consiglio Nazionale delle

Ricerche

Fondazione Monasterio

Heart Valve Disease:

ROLE OF IMAGING

Diagnosis

Heart Valve Disease:

ROLE OF IMAGING

Diagnosis

Preprocedural Planning

Procedural Guidance

Heart Valve Team

CT Surgeon CV Anesthesiologist

Cardiology

CV Imaging

Interventional

Cardiologist

Expert(s)

Valve Expert

 Valve Clinic Care Coordinators

Patient Selection & Ev Shared Decision Making G Clinical Information

- Major CV comorbidites
- Major non-CV comorbiditi
- Risk score assessment

Functional Assessment

- Frailty
- Physical and cognitive fun

Risk Categories

- Low risk
- Intermediate risk
- High or extreme risk

TAVR Procedure Preplanning

Valve choice and access c
Anesthesia and procedure
Anticipated complication

Procedural Details

- Vascular access and closu
- Valve delivery and deploy
- Postdeployment evaluation
- Management of complica

Post-TAVR Managem Early Post-TAVR

- Postprocedure monitoring pain management
- Early mobilization and dis
- Monitor for conduction al

Long-term Management

- Antithrombotic therapy and endocarditis prophylaxis
- Management of concurrent cardiac disease
- Post-TAVR complications

Heart Team composition

Aortic Stenosis:

echocardiographic definition

Mean and Peak Transvalvular gradients

 $P = 4v_{max}^2$

If LVOT velocity is > 1.5 m/s or the aortic velocity is < 3.0 m/s, LVOT velocity should be considered in the Bernoulli Equation

$$P = 4 (v^2 - v^2)_{max}$$

Aortic valve evaluation

the role of echocardiography

Aortic Valve assessment:

- O AS severity (Valvular Area and Gradient)
- O Calcification distribution, mobility, AR grade
- O Spatial relationship of Calcium and coronary ostia
- O Valvular Morphology (Bicuspid valve)
- O LVOT morphology (septal hypertrophy, ...)
- O Any vegetations or mobile structures
- Measurement of Aortic root diameters
 - Annulus, sub-aortic/LVOT, sino-tubular junction

Aortic valve evaluation: the role of echocardiography

Bleakley C, Eskandari M, Monaghan M. 3D transoesophageal echocardiography in the TAVI sizing arena: should we do it and how do we do it?. Echo Res Pract. 2017;4(1):R21–R32. doi:10.1530/ERP-16-0041

CT for TAVI

- → Rapid volume coverage
- High and isotropic spatial resolution
- → Sensitive to calcium

CT PREPROCEDURAL EVALUATION

3D Volume Rendering

CT TAVI Planning

Date of Birth: 19	mar 1936 (83)	Study Date:	Jan 21, 2019	Coronary Arteries:	
Patient ID: 55	0392	Report Date:	Mar 23, 2019	LCA	RCA
Aortic Annulus Meas	urements: 79.5 mm (ø 25.3 mm)	2000	A	SRA - c	SRA Height: 15.7mm
Area:	483.3 mm² (ø 24.8 mm)	Г	160000000	ARI o o	PLS AL o
Excentricity:	0.25 (21.6 x 28.8 mm)		• Min: 01 Gmm		
Aortic Angulation:	32.8°	-	Max: 28.8mm		
LCA Distance:	15.7 mm	RI -	LS	L	
RCA Distance:	21.5 mm			L.P.	ILP'
Cusp Calcification:	Mild (1)	L		LVOT:	
LVOT Calcification:	Moderate (2)	Area: Perim	483.3mm² eter: 79.5mm	-15 mm	-10 mm
Annulus Calcification:	Mild (1)	a second	P	A	A
Implantation Plane: RCC Anterior:	LAO 11° Caudal 7°		90 80 70 60 50	FI LS	
NCC Posterior:	LAO 69° Cranial 25°		40	Aortic Valve	
LV View:	RAO 30° Caudal 27°	- Cranial		+5 mm	+10 mm
Access: Planned Access: Pigtail Access:	TF Left TF Right		30 20 10 10 10 20 30 40 50 60 70 80 90 20 10 10 10 10 10 10 10 10 10 10 10 10 10	A Ri P	A RI LS RI P

RAO	Projection:	LAO P	rojection:
40°	Caudal 30°	0°	Caudal 14°
30°	Caudal 27°	10°	Caudal 8°
20°	Caudal 23°	20°	Caudal 2°
10°	Caudal 19°	30°	Cranial 5°
0 °	Caudal 14°	40°	Cranial 11°

-5 mm

+15 mm

Comments:

AFC sx 6 x 7 calcio posteriore. AFC dx 6 x 6,5 calcio posteriore AIC dx Stenosi placca molle 3,5 x 5,5 mm. AIC sx 7 x 7 mm un po di calcio

Calcio LVOT SAPIEN 3 ULTRA 26 mm o ACURATE TF L o EVOLUT PRO 29 mm

GUIDELINES

Computed Tomography Imaging in the Context of Transcatheter Aortic Valve Implantation (TAVI)/Transcatheter Aortic Valve Replacement (TAVR) An Expert Consensus Document of the Society of Cardiovascular Computed Tomography

Philipp Blanke, Jonathan R. Weir-McCall, Stephan Achenbach, Victoria Delgado, Jörg Hausleiter, Hasan Jilaihawi, Mohamed Marwan, Bjarne L. Nørgaard, Niccolo Piazza, Paul Schoenhagen and Jonathon A. Leipsic

Step & Description

Step 1: Start out with multi-planar images in default axial, sagittal, and coronal orientation; center cross-hairs onto the aortic valve

Multiplanar reformats

Step 2: Align the cross-hairs in the sagittal and coronal views with the long axis of the aortic root; the resulting double oblique transverse view will depict the aortic valve en face.

Step 3: Move the double oblique transverse plane up and down to identify the lowest insertion point of the right coronary cusp which is usually located at about 1 o'clock. Position the center of the cross-hairs exactly at the most basal insertion point of the right coronary cusp (white arrow head).

Step 4: Rotate the cross-hairs counter-clock-wise without moving up and down while maintaining its center position so that the formerly coronal view (here red cross-hair) transects the lowest insertion point of the non-coronary cusp, which is located at approximately 8 o'clock (white arrow head).

Step 5: The formerly coronal, now double-oblique view will show the lowest insertion point both of the right coronary cusp and the non-coronary cusp (white arrow heads). In this view, rotate the (here orange) cross-hair indicating the double-oblique transverse view to transect exactly through the most basal insertion point of the non-coronary cusps. Once this is achieved, the transverse double oblique plane will contain two of the three lowest cusp insertion points.

Step 6: In the formerly sagittal view, rotate (without moving it) the cross-hair of the transverse double oblique plane (here orange) until the lowest insertion point of the left coronary cusp just barely appears in the double oblique transverse view (white arrow head). Now, the formerly axial plane is exactly aligned with the lowest cusp insertion points of all three aortic cusps and represents both the orientation as well as the level of the annular plane.

Step 7: Measurements of aortic annulus dimensions should be performed in the annular plane by means of a contouring tool.

CT for TAVI: DATA

1 Vascular Access

2 Coronary Ostia

3 Annulus Dimensions / Sizing

4 Fluroscopic Angulation

Table 4 Procedural Outcomes

	MDCT Group (n = 133)	Control Group $(n = 133)$	p Value
Procedural mortality	0 (0)	0.8 (1)	0.316
In-hospital mortality	3.8 (5)	6.8 (9)	0.272
30-day mortality	5.3 (7)	6.8 (9)	0.606
Annular rupture	0.8 (1)	0.8 (1)	1.000
THV embolization	0 (0)	1.5 (2)	0.156
THV-in-THV implantation	0.8 (1)	2.3 (3)	0.314
Procedural myocardial infarction	0.8 (1)	0 (0)	0.316
Post-dilation	12.8 (17)	12.8 (17)	1.000
Permanent pacemaker implantation	8.3 (11)	9 (12)	0.827
Paravalvular regurgitation			
None	27.8 (37)	28.6 (38)	0.892
Mild	66.9 (89)	58.6 (78)	0.163
More than mild	5.3 (7)	12.8 (17)	0.032
Severe	0 (0)	4.5 (6)	0.013

Fluoroscopic intraprocedural guidance

Unive

Zurich

Subclinical leaflet thrombosis in TAVI and SAVR bioprostheses

- Reduced leaflet motion (RELM) was found in 40% in the Portico trial and 13% in the registries
- OAC vs DAPT was associated with a lower RELM (0% vs. 55%, P=0.01, in the clinical trial; 0% vs. 29%, P=0.04, in the registries)
- Restoration of leaflet motion in all 11 patients who received OAC
- Higher stroke/TIA in patients with RELM (18% vs 1%, P=0.007, in the registries)

Makkar RR et al. N Engl J Med 2015

Moderate and severe RELM

The Mitral Valve Complex is Complex!

- It's not round nor "D" shaped it's asymmetric
- It's not flat it's saddle-shaped
- Its annulus is not rigid it's "dynamic"
- It's not passive it contracts, reducing valve area during systole
- It's a high pressure closure valve, not a high pressure opening valve
- It's got 24+ chords
- It's relatively easy to block aortic outflow
- It's easier to form thrombus on than the AV
- Its annulus changes size as the heart fails
- MR is not one disease!

Just Accepted

2020 Focused Update of the 2017 ACC Expert Consensus Decision Pathway on the Management of Mitral Regurgitation

FOCUSED UPDATE WRITING COMMITTEE, Robert O. Bonow, Patrick T. O'Gara, David H. Adams, Vinay Badhwar, Joseph E. Bavaria, Sammy Elmariah, Judy W. Hung, JoAnn Lindenfeld, Alanna A. Morris, Ruby Satpathy, Brian Whisenant and Y. Joseph Woo

Figure 12. Algorithm for Determining Eligibility for Transcatheter MV Intervention

Transcatheter Repair Devices

TMVr targets MV leaflets, chordal apparatus, and mitral annulus.

These devices show good safety outcomes, but improvements in ease of use and efficacy are required.

Anatomic Target	Device	Description	Main Indications	Status	Reported # of Treated Patients
Mitral Leaflets	MitraClip	Edge-to-Edge	Primary and Secondary MR	FDA Approved CE Mark	>80,000
	Pascal	Edge-to-Edge	Primary and Secondary MR	CE Mark	2500
	Carillon	Coronary Sinus cinching	Secondary MR	CE Mark	>1000
	Cardioband	Direct annuloplasty	Secondary MR	CE Mark	>500
(A A	Millipede	Direct annuloplasty	Secondary MR	-	>65
	NeoChord	Artificial chordal implantation	Posterior leaflet flail/prolapse	CE Mark	>1100
	Harpoon	Artificial chordal implantation	Posterior leaflet flail/prolapse	-	>65

11

Mitraclip

ined herein for distribution outside the U.S. only. Check the regulatory status of the device before distribution in areas where CE marking is not the regulation in force.

Mitraclip

 Out/05/2015
 10:53:37
 TISO.2 MI 0.5

 Wher/13.27 WW: 255
 X7-2t/TEE
 Ma

 Som
 3D Beats 1
 Ma

 3D 20%
 75 100
 Image: Comparison of the comparison of the

Utility vs. futility of MitraClip procedure according to severity of MR and LV systolic dysfunction

Pibarot, Philippe et al. "MITRA-FR vs. COAPT: lessons from two trials with dian et least opposed results." European heart journal cardiovascular Imaging (2019).

Direct Annuloplasty by Cardioband

500 patients treated

- Trans-femoral venous access (transeptal) – best for safety
- Supraannular fixation like in surgery
- Significant Reduction of Annular dimensions – device enables reduction of up to size 28 surgical ring
- Preserves the native anatomy keeps future options open

Direct Annuloplasty by Cardioband

- Trans-femoral venous access (transeptal) – best for safety
- Supraannular fixation like in surgery
- Significant Reduction of Annular dimensions – device enables reduction of up to size 28 surgical ring
- Preserves the native anatomy keeps future options open

Cardioband Preprocedural imaging: CT

- Procedural Planning
- Mitral annulus measurement
- No significant mitral annulus calcification
- LCx and CS distance/hinge point/angle for anch deployment
- TS puncture (see beyond)
- Need for high CT quality

LCx distance/hinge point/angle for anchor deployment

Distance of presumed anchor positon to the LCx and the hinge point?

Je solutions

Cardioband Preprocedural imaging: CT

3D TEE views for different regions

Cardioband-procedural steps

Imaging modalities used during different procedural steps

Access

- Femoral vein
- Transseptal puncture
- Transseptal sheath (TSS) positioning
- Guide catheter (GC) positioning at the landing zone for the 1st anchor
- Navigation of the GC/device deployment
- Size adjustment and evaluation of final result (Annular dimensions/ MR grade)

Echo/ Fluoro

Transseptal Mitral Valve in Valve

Transseptal Mitral Valve in Valve

Valcare Amend direct Transseptal Mitral Anuloplasty

Valcare Amend direct Transseptal Mitral Anuloplasty: intraoperative TEE guidance

Valcare Amend direct Transseptal Mitral Anuloplasty: results

Cardioband Tricuspid Pre-procedural Planning

1st Anchor to Distal CS Ostia: 102

|--|

	Recommended measurement range of tricuspid valve annulus from Aorta to Coronary Sinus (mm)	Recommended Cardioband Tricuspid Implant Size	Approximate Cardioband Implant Working Length (mm)
	73-80 mm	А	76
	81-88 mm	В	84
	89-96 mm	С	92
1	97-104 mm	D	100
	105-112 mm	E	108
	113-120 mm	F	116

Annulus Area Diastole

1st Anchor to AoV

Predicted Annular Device Coverage

73,0%

Annulus Area Systole

20,9 mm Anchors Proximal to RCA

Cardioband Tricuspid System Intraprocedural Echo guidance

Intraprocedural

Cardioband Tricuspid System: the additional value of Intracardiac Echocardiography

Advantages of ICE:

- High-resolution real-time visualization
 of cardiac structures
- Early recognition of procedural complications (e.g. thrombus formation)
- Avoidance of general anaesthesia
- Reduction of radiation exposure

Personalized predictive modelling for pre-operative sights for excellence TAVI planning

Conclusions

- Multimodal cardiac imaging plays a central role in patient and device selection, before and during the VALVULAR heart disease interventions
- Familiarization with 2D- and 3D- imaging modalities (TTE, TEE, CTA, MRI, and ICE) is mandatory for Cardiologist
- New imaging modalities (Fusion-imaging, predictive modeling, etc.) greatly facilitates the planning and execution of interventions
- the cardiac imaging field is able to envision a future of excellence, quality, and innovation and has outlined concrete steps to realize this potential

Valvulopatie ed imaging multimodale

HOT TOPICS IN CARDIOLOGIA 2021

27 e 28 Settembre Sede della Camera di Commercio di Napoli

Sergio Berti

Fondazione C.N.R.- Regione Toscana "G. Monasterio" berti@ftgm.it

> Consiglio Nazionale delle

Ricerche

Fondazione Monasterio